## UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA - UESB Departamento de Química e Exatas - DQE

# Problema do tipo Job - Shop: Abordagens Híbridas utilizando à Teoria dos Conjuntos Fuzzy

Márcia Braga de Carvalho Ferreira

05 de novembro de 2014



#### 1. Motivação e Objetivos do Trabalho

- Em problemas reais é comum encontrarmos incertezas nas informações. Por exemplo: disponibilidade de equipamentos, tempos de processamento, tempos de transporte e custos.
- O uso da teoria clássica torna-se inviável pela sua ineficiência no tratamento de informações imprecisas.
- Uma alternativa é utilizar modelos com incertezas, pois deixarão o problema mais próximo da realidade.
- As incertezas podem ser modeladas e tratadas utilizando a teoria dos conjuntos *fuzzy* (Zadeh 1965, Gomide e Pedrycz 1998).
- Desenvolver métodos híbridos baseados em algoritmo genético e algoritmo de colônia de formigas para encontrar um conjunto de escalonamentos com alto grau de ótimalidade e em tempo computacional satisfatório.
- ► Encontrar um conjunto de soluções factíveis de tal maneira que minimize o *makespan fuzzy* do problema satisfazendo suas restrições.
- ► Trabalhos da literatura possuem a desvantagem de lidarem com um problema clássico associado.
- Contornar essa dificuldade mantendo a incerteza em todo processo de resolução.

VII Bienal da SBM

Problema do tipo Job - Shop: Abordagens Híbridas utilizando à Teoria dos Conjuntos Fuzzy

#### 3. Algoritmo Genético e Algoritmo de Otimização por Colônia de Formigas

- ► ACS: Mecanismo computacionalmente composto por metodologias inteligêntes inspirados no comportamento de colônia de formigas reais para resolver problemas do mundo real.
- ► AG: Modelos computacionais inspirados na biologia evolutiva extremamente simples e eficientes.
- Avaliação de um conjunto de pontos (população).
- ▶ Melhores chances de solução ótima global.
- Retém a memória da colônia inteira.
- Menos afetado pela má solução inicial (devido à combinação de seleção de caminho aleatório e memória da colônia).
- ► Apropriados para problemas complicados de otimização.
- ► Algoritmos simples, de fácil manipulação e flexibilidade.

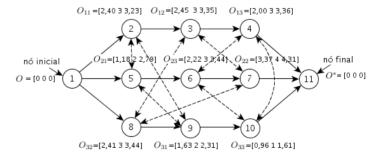
### Algoritmos Implementados:

- ► MA+ACS (CC-MO): Algoritmo Híbrido MA+ACS com junção de duas técnicas de busca local.
- ► AG+ACS: Algoritmo Genético com população inicial gerada pelo ACS.

2. Descrição do Problema

O JSSPF consiste de um conjunto de J tarefas que precisam ser processadas em um conjunto de M máquinas.

- cada tarefa consiste de uma sequência de operações pré-definida;
- cada operação de uma tarefa deve ser processada em uma única máquina por vez, sem interrupção;
- uma máquina pode executar somente uma operação de cada vez;
- as operações de uma mesma tarefa devem ser executadas em máquinas diferentes;
- ▶ O tempo de processamento das operações é pré-definido.

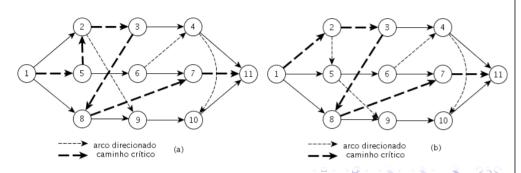

O objetivo do problema é encontrar uma ordem de escalonar as tarefas nas máquinas de tal maneira que minimize o *makespan fuzzy*.

VII Bienal da SBM

Problema do tipo Job - Shop: Abordagens Híbridas utilizando à Teoria dos Conjuntos Fuzzy

#### 4. Representação do Problema: Grafo disjuntivo com parâmetros fuzzy

| Tarefas | Ordem das opera                    | ções (máquina, tempo d       | e processamento)                   |
|---------|------------------------------------|------------------------------|------------------------------------|
| 1       | O <sub>11</sub> (1, [2,40 3 3,23]) | $O_{12}(2, [2,45\ 3\ 3,35])$ | O <sub>13</sub> (3, [2,00 3 3,36]) |
| 2       | $O_{21}(1, [1.18 \ 2 \ 2.79])$     | $O_{23}(3, [2,22\ 3\ 3,44])$ | $O_{22}(2, [3,37 4 4,31])$         |
| 3       | $O_{32}(2, [2,41\ 3\ 3,44])$       | $O_{31}(1, [1,63\ 2\ 2,31])$ | $O_{33}(3, [0.96 \ 1 \ 1.61])$     |




 $O_{ij} = \tilde{p}$  ; uma operação da tarefa i máquina j com tempo de processamento  $\tilde{p}$ 

arco conjuntivo (sequência tecnologica)
arco disjuntivo (pares de operações na mesma máquina)

4□ > 4回 > 4 = > 4 = > = 9 < 0</p>

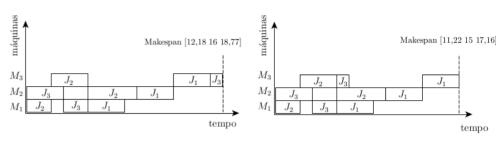
- . Realizado no melhor indivíduo da população.
- . Objetivo de melhorar uma solução obtida pelos operadores de *crossover* e mutação.
  - ▶ (CC) Troca de tarefas adjacentes no caminho crítico.



VII Bienal da SBM

Problema do tipo Job - Shop: Abordagens Híbridas utilizando à Teoria dos Conjuntos Fuzzy

#### 7. Experimentos


Plataforma: MATLAB - Linux, Intel Core 2 Duo 2.0GHz e 4Gb RAM. Parâmetros:  $N_{gera} = 500, T_{pop} = 40, P_c = 0, 8, P_c = 0, 6 / N_{formigas} = 15, \rho = 0, 01, \alpha = 0, 1, \beta = 2, q_0 = 0, 7.$ 

| Problema e   | Algoritmo     | Tempo | Makespan              | Defuzzificação | Makespan |
|--------------|---------------|-------|-----------------------|----------------|----------|
| tamanho      |               | (seg) | fuzzy                 |                | crisp    |
| Ft06         | AG-ACS        | 172   | [50,6 55 57,75]       | 54,4           | 55       |
| $(6\times6)$ | MA-ACS(CC-MO) | 186   | [50,6 55 57,75]       | 54,4           |          |
| La01         | AG-ACS        | 391   | [612,7 666 699,3]     | 659,3          |          |
| (10×5)       | MA-ACS(CC-MO) | 490   | [612,7 666 699,3]     | 659,3          | 666      |
| La08         | AG-ACS        | 887   | [793,9 863 906,1]     | 854,3          | 863      |
| (15×5)       | MA-ACS(CC-MO) | 910   | [793,9 863 906,1]     | 854,3          |          |
| La11         | AG-ACS        | 1588  | [1124,2 1222 1283,1]  | 1209,8         |          |
| (20×5)       | MA-ACS(CC-MO) | 1852  | [1124,2 1222 1283,1]  | 1209,8         | 1222     |
| La17         | AG-ACS        | 935   | [729,56 793 832,65]   | 785,07         |          |
| (10×10)      | MA-ACS(CC-MO) | 1011  | [722,2 785 824,2]     | 777,13         | 784      |
| Abz6         | AG-ACS        | 918   | [894,24 972 1020,6]   | 962,28         |          |
| (10×10)      | MA-ACS(CC-MO) | 979   | [870,32 946 993,3]    | 936,44         | 943      |
| Orb02        | AG-ACS        | 952   | [859,28 934 980,7]    | 924,66         |          |
| (10×10)      | MA-ACS(CC-MO) | 1097  | [828, 900, 945]       | 891            | 888      |
| La23         | AG-ACS        | 2244  | [1004,64 1092 1146,6] | 1081,1         | _ 1032_  |
| (15×10)      | MA-ACS(CC-MO) | 2802  | [966 1050 1102,5]     | 1039,3         |          |

#### VII Bienal da SBM

#### 6. Métodos de busca local

▶ (MO) Troca de tarefa na Máguina mais Ociosa.



Objetivo: reduzir gaps.



tempo

VII Bienal da SBM

Problema do tipo Job - Shop: Abordagens Híbridas utilizando à Teoria dos Conjuntos Fuzzy

#### 8. Quantidade de indivíduos com +80% de possibilidade de serem ótimos/ Conclusões

| Instância             | AG-ACS | MA-ACS(CC-MO) |
|-----------------------|--------|---------------|
| Ft06 (6 × 6)          | 2      | 4             |
| La01 $(10 \times 5)$  | 16     | 16            |
| La08 $(15 	imes 5)$   | 16     | 15            |
| La11 $(20 \times 5)$  | 18     | 18            |
| La17 $(10 	imes 10)$  | 12     | 15            |
| Abz6 $(10 \times 10)$ | 0      | 15            |
| $Orb02(10 \times 10)$ | 0      | 15            |
| La23 $(15 	imes 10)$  | 0      | 16            |

- ▶ A hibridização entre os algoritmos ACS e AG mostrou-se eficiente e ao mesmo tempo promissor para resolver o problema apresentado.
- ▶ Os algoritmos possuem a vantagem de lidarem com o problema fuzzy na sua íntegra, sem a necessidade de métodos de comparação para encontrar o makespan fuzzy do problema.
- ▶ O algoritmo MA-ACS (CC-MO) encontra um conjunto solução com alto grau de ótimalidade.