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Abstract

We construct equilibrium states, including measures of maximal en-
tropy, for a large (open) class of non-uniformly expanding maps on com-
pact manifolds. Moreover, we study uniqueness of these equilibrium
states, as well as some of their ergodic properties.

1 Introduction

The theory of equilibrium states originates from statistical mechanics and was
thoroughly developed, in the classical setting of uniformly hyperbolic dynamical
systems, in the seventies and eighties, especially by Sinai, Ruelle, Bowen, Parry
and Walters.

In general, given a continuous transformation f : M → M on a compact
metric space, and given a continuous function φ, we call equilibrium state for
(f, φ) a Borel probability measure µφ such that

hµφ
(f) +

∫
φdµφ = sup

µ∈I
{hµ(f) +

∫
φdµ},

where the supremum is taken over the set I of f -invariant probabilities. That
is, an equilibrium state is a maximum of the function Fφ : I → R defined by

Fφ(µ) = hµ(f) +
∫

φdµ.

It is now classical that for uniformly hyperbolic diffeomorphisms, as well
as for uniformly expanding maps, equilibrium states always exist and they are
unique if the potential is Hölder continuous, assuming that the transformation
f is transitive. See [Par64, Sin72, Bow75, Rue89]. Moreover, the equilibrium
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states coincide with the Gibbs measures, that is, the invariant probability mea-
sures satisfying

µ(Bε(n, x)) ∼= exp (
n−1∑
i=0

φ(f i(x))− nP ) (1)

for some P ∈ R, called the pressure of φ, where Bε(n, x) is the dynamical ball
of length n and size ε around x,

Bε(n, x) = {y ∈ M ; d(f i(y), f i(x)) ≤ ε, for every 0 ≤ i ≤ n− 1},

and ∼= means equality up to a uniform factor, independent of x and n. In this
setting, the pressure P is given by

P = sup
µ∈I

{
hµ(f) +

∫
φdµ

}
.

Several authors have been studying equilibrium states for non-hyperbolic
systems: Bruin, Keller [BK98] and Denker, Urbanski [DU92, Urb98], for interval
maps and rational functions on the sphere, and Buzzi, Maume, Sarig [Buz99,
BMD02, BS, Sar03] and Yuri [Yur99, Yur00, Yur03], for countable Markov shifts
and for piecewise expanding maps in one and higher dimensions, to mention
just a few of the most recent works. Several of these papers, and particularly
[DU92, Sar03, Yur99, Yur00, Yur03], consider systems with neutral periodic
points, a setting of non-hyperbolic dynamics which has attracted a great deal
of attention over the last years. Despite all these important contributions, it is
fair to say that the theory of equilibrium states is very much incomplete outside
the uniformly hyperbolic case.

The present work may be seen as a step towards obtaining such a theory
in a general setting of non-uniformly hyperbolic systems (non-zero Lyapunov
exponents). Indeed, we prove existence of equilibrium states for fairly general
potentials and for a robust (open) class of non-uniformly expanding maps. This
class will be defined precisely in the next section. Here we just mention one of
its main features:

lim sup
n→∞

1
n

n−1∑
i=0

log ‖Df(f i(x))−1‖ ≤ −2c < 0 (2)

for “most” points, including a full measure set relative to the equilibrium states
µφ that we construct. We prove that equilibrium states do exist for every
potential φ with small variation, that is, such that

supφ− inf φ < K (3)

for some convenient constant K (see Definition 2.2 and comments following it).
As a consequence of (2), these measures are non-uniformly expanding, that
is, µφ-almost every point has only positive Lyapunov exponents. Moreover, is
possible to prove that µφ has a kind of weak Gibbs property (see [Yur00]) as in

2



(1), with ∼= meaning equality up to a factor with subexponential growth on the
orbit of each x.

The basic strategy for the construction is to find a subset K of invariant
probability measures which are expanding and such that µ-almost every point
has infinitely many hyperbolic times, in the sense of [Alv00, ABV00]. We prove
that ν 7→ Fφ(ν) is upper-semicontinuous on K and there exist maximum on K of
Fφ. Using (3) we check that the maximum obtained on K is really a maximum
of Fφ over all invariant probabilities.

These arguments apply, in particular, when the potential φ is constant, in
which case µφ maximizes the entropy:

hµφ
(f) = htop(f).

However, in this case we can go much further. Using a different approach, via
semi-conjugation to a one-sided subshift of finite type, we are able to prove
that the maximal entropy measure is unique and a Markov measure. If f is
topologically mixing, this measure is Bernoulli.

Closing this introduction, we mention some questions that are naturally
raised by our results. The first one is to prove uniqueness or ,at least, finiteness of
the equilibrium states for Hölder potentials in the general situation of (3), under
topological transitivity. In this direction, in a forthcoming work the author
proves existence and uniqueness of equilibrium states for an open class of local
diffeomorphisms and for potentials with low variation satisfying a summability
condition. Another question concerns the need of hypothesis (3) itself. Ongoing
work indicates that equilibrium states do exist also for potentials with large
variation, but they may have both positive and negative Lyapunov exponents:
from the viewpoint of these measures the dynamics looks hyperbolic, rather
than expanding.

2 Setting and Statements

We always consider a C1+α local diffeomorphism f : M l → M l, defined on a
compact Riemannian manifold with dimension l. Let m be normalized Lebesgue
measure on M . We suppose that f satisfies, for positive constants δ0, β, δ1, σ1,
and p, q ∈ N,

(H1) There exists a covering B1, . . . , Bp, . . . , Bp+q of M such that every f |Bi is
injective and

• f is uniformly expanding at every x ∈ B1 ∪ · · · ∪Bp:

‖Df(x)−1‖ ≤ (1 + δ1)−1.

• f is never too contracting: ‖Df(x)−1‖ ≤ (1 + δ0) for every x ∈ M .

(H2) f is everywhere volume-expanding: |detDf(x)| ≥ σ1 with σ1 > q.

Define
V = {x ∈ M ; ‖Df(x)−1‖ > (1 + δ1)−1}.
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(H3) There exists a set W ⊂ Bp+1 ∪ · · · ∪Bp+q containing V such that

M1 > m2 and m2 −m1 < β

where m1 and m2 are the infimum and the supremum of log ‖detDf‖ on
V , respectively, and M1 and M2 are the infimum and the supremum of
log ‖detDf‖ on W c, respectively.

Definition 2.1. The supremum of Fφ over the set all invariant probability is
called the pressure of φ and will be denoted by P (φ)

Definition 2.2. Given φ : M → R continuous, we say that φ has ρ-low variation
if

max
x∈M

φ(x) < P (φ)− ρhtop(f).

Remark 2.3. Note that this is an open condition on the potential, with respect
to the C0 topology. Note also that this is somewhat more general than condition
(3) for K small enough: assuming K is less than (1−ρ)htop(f), if φ satisfies (3)
then φ̃ = φ− inf φ has ρ-low variation potential; the conclusions of Theorem A
are not affected if one replaces φ by φ̃, because potentials that differ by a
constant have the same equilibrium states.

Our first main result is

Theorem A. Assume hypotheses (H1), (H2), (H3) hold, with δ0 and β suffi-
ciently small. Then, there exists ρ such that if φ is a continuous potential with
ρ-low variation then φ has some equilibrium state. Moreover, these equilibrium
states are hyperbolic measures, with all Lyapunov exponents bigger than some
c(δ1, σ1, p, q) > 0.

For maximal entropy mesures we are able to say a lot more, under the
following additional hypothesis:

(H4) There exists a Markov partition R = {R1, . . . , Rd} for f such that

• R is transitive: for any i, j there exists a k such that fk(Ri)∩Rj 6= ∅;
For simplicity in the proofs we also assume that W ⊂ R1.

We say that a system (f, µ) is Bernoulli (respectively Markov), if it is ergod-
ically equivalent to a subshift of finite type endowed with a Bernoulli (respec-
tively Markov) measure. See e.g. [Mañ87] for definitions.

Theorem B. Assume hypotheses (H1), (H2), (H3), (H4) hold with δ0 and
β sufficiently small. Then there exists a unique invariant measure µmax with
hµmax(f) = htop(f). This measure also satisfies,

1. all Lyapunov exponents of µmax are larger than some c(δ1, σ1, p, q) > 0;

2. (f, µmax) is Markov and, if f is topologically mixing, it is Bernoulli.
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Important related results have been obtained by Yuri [Yur99, Yur00, Yur03],
where she studies equilibrium states for very general Markov systems. On the
other hand, our hypotheses are different and, to the best of our knowledge,
our approach for proving Theorem A is new. For one thing, we do not assume
existence of a generating Markov partition: instead, we construct a special
partition and prove that it is generating for a carefully chosen class of measures
(the set K mentioned in the Introduction). In general terms, we exploit the
notion of hyperbolic times to deduce from the dynamical behaviour certain facts
valid at almost every point, uniform versions of which are taken as hypotheses
in Yuri’s approach. For instance, we need no analogue of hypothesis (C5) in
[Yur99]: in fact, for our examples in Section 3 the diameters of cylinders do
not tend to zero. Besides, there a low variation potential may not satisfies the
condition (C4) in [Yur99]. A combination of both viewpoints should lead to
further progress in this area.

Acknowledgements: I am very thankful to my advisor Marcelo Viana for
his exceptional advice and friendship. Warm thanks go also to A. Tahzibi, J.
Bochi, C. Matheus, and A. Arbieto for suggestions and many fruitful discussions.
I am indebted to IMPA and its staff for a fine working environment, and to CNPq
for financial support.

3 Examples

In this section, we sketch the construction of a non-hyperbolic map f0 that
satisfies the conditions in theorems A and B above. It will be clear from this
construction that these conditions hold, in fact, for every map f C1-close to f0.

We start by considering any Riemann manifold that supports an expanding
map g : M → M . For simplicity, choose M = Tn the n-dimensional torus, and
g an endomorphism induced from a linear map with eigenvalues λn > · · · >
λ1 > 1. Denote by Ei(x) the eigenspace associated to the eigenvalue λi in TxM .

Since g is expanding, it admits a transitive Markov partition R1, . . . , Rd

with arbitrarily small diameter. We may suppose that g|Ri is injective for every
i = 1, . . . , d. Replacing g by a iterate if necessary, we may suppose that there
exists a fixed point p0 of g and, renumbering if necessary, this point is contained
in the interior of the rectangle Rd of the Markov partition.

Considering a small neigbourhood W ⊂ Rd of p0 we deform g inside W
along the direction E1. This deformation consists essentially in rescaling the
expansion along the invariant manifold associated to E1 by a real function α.
Let us be more precise:

Considering W small, we may identify W with a neighbourhood of 0 in Rn

and p0 with 0. Without loss of generality, suppose that W = (−2ε, 2ε)×B3r(0),
where B3r(0) is the ball or radius 3r and center 0 in Rn−1. Consider a function
α : (−2ε, 2ε) → R such α(x) = λ1x for every |x| ≥ ε and for small constants
γ1, γ2:

1. (1 + γ1)−1 < α′(x) < λ1 + γ2
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2. α′(x) < 1 for every x ∈ (− ε
2 , ε

2 );

3. α is C0-close to λ1: sup
x∈(−ε,ε)

|α(x)− λ1x| < γ2,

Also, we consider a bump function θ : B3r(0) → R such θ(x) = 0 for every
2r ≤ |x| ≤ 3r and θ(x) = 1 for every 0 ≤ |x| ≤ r. Suppose that ‖θ′(x)‖ ≤ C
for every x ∈ B3r(0). Considering coordinates (x1, . . . , xn) such that ∂xi

∈ Ei,
define f0 by:

f0(x1, . . . , xn) = (λ1x1 + θ(x2, . . . , xn)(α(x1)− λ1x1), λ2x2, . . . , λnxn)

Observe that by the definition of θ and α we can extend f0 smoothly to
Tn as f0 = g outside W . Now, is not difficult to prove that f0 satisfies the
conditions (H1), (H2), (H3) and (H4) above.

First, we have that ‖Df0(x)−1‖−1 ≥ min
i=1,...,n

‖∂xi
f0‖. Observe that:

∂x1f0(x1, . . . , xn) = (α′(x1)θ(x2, . . . , xn) + (1− θ(x2, . . . , xn))λ1, 0, . . . , 0)

∂xi
f0(x1, . . . , xn) = ((α(x1)− λ1)∂xi

θ(x2, . . . , xn), 0, . . . , λi, 0, . . . , 0), for i ≥ 2.

Then, since ‖∂xiθ(x)‖ ≤ C for every x ∈ B3r(0), and α(x1)− λ1x1 ≤ γ2 we
have that ‖∂xi

f0‖ > (λi − γ2C) for every i = 2, . . . , n. Moreover, by condition
1, ‖∂x1f0‖ ≤ max{α′(x1), λ1} ≤ λ1 + γ2, if we choose γ2 small in such way that
λ2 − γ2C > λ1 + γ2 then:

‖∂xif0‖ > ‖∂x1f0‖, for every i ≥ 2.

Notice also that ‖∂x1f0‖ ≥ min{α′(x1), λ1} ≥ (1 + γ1)−1. This prove that:

‖Df0(x)−1‖−1 ≥ min
i=1,...,n

‖∂xif0‖ (1 + γ1)−1.

Since f coincides with g outside W , we have ‖Df0(x)−1‖ ≤ λ−1
1 for every

x ∈ W c. Together with the above inequality, this proves condition (H1), with
δ0 = γ1.

Choosing γ1 small and p = d − 1, q = 1, Bi = Ri for every i = 1, . . . , d,
condition (H2) is imediate. Indeed, observe that the Jacobian of f0 is given by
the formula:

detDf0(x) = (α′(x1)θ(x2, . . . , xn) + (1− θ(x2, . . . , xn))λ1)
n∏

i=2

λi.

Then, if we choose γ1 <
∏n

i=2 λi − 1:
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detDf0(x) > (1 + γ1)−1
n∏

i=2

λi > 1.

Therefore, we may take σ1 = (1 + γ1)−1
∏n

i=2 λi > 1.
To verify property (H3) for f0, observe that if we denote by

V = {x ∈ M ; ‖Df0(x)−1‖ > (1 + δ1)−1},

with δ1 < λ1− 1, then V ⊂ W. Indeed, since α(x1) is constant equal to λ1x1

outside W we have that ‖Df0(x)−1‖ ≤ λ−1
1 < (1 + δ1)−1, for every x ∈ W c.

Given γ3 close to 0, we may choose δ1 close to 0 and α satisfying the conditions
above in such way that,

sup
x,y∈V

α′(x1)− α′(y1) < γ3.

If m1 and m2 are the infimum and the supremum of |det Df0| on V , respectively,

m2 −m1 ≤ C( sup
x,y∈V

α′(x1)− α′(y1)) < γ3C,

where C =
n∏

i=2

λi. Then, we may take β = γ3C in (H3). If M1 is the infimum

of |detDf0| on W c, M1 > m2, since λ1 > (1 + δ1) ≥ sup
x∈V

α′(x). Condition (H4)

is clear from the construction, since f0 = g outside W ⊂ Rd, so the Markov
property of {R1, . . . , Rd} is not affected by the pertubation.

The arguments above show that the hypotheses (H1), (H2), (H3) and (H4)
are satisfied by f0. Moreover, if we one takes α(0) = 0, then p0 is fixed point
for f0, which is not a reppeler, since α′(0) < 1. Therefore, f0 is not a uniformly
expanding map.

It is not difficult to see that this construction may be carried out in such way
that f0 does not satisfy the expansiveness property: there is a fixed hyperbolic
saddle point p0 such that the stable manifold of p0 is contained in the unstable
manifold of two other fixed points.

For a discussion of related examples see [Car93] and [BV00].

4 Expanding measures and hyperbolic times

The proof of Theorem A occupies this section and the next one. Let us begin
by detailing a bit more our strategy to prove the existence of equilibrium states:

• To exhibit a subset K of invariant measures such that all their Lyapunov
exponents are positive, and almost every point has infinitely many hyper-
bolic times.
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• To show that there exists a common generating partition for all the mea-
sures in K. This allows us to prove that the function µ → hµ(f) +

∫
φdµ

is upper-semicontinuous on K. Using this, we get that the maximum of
hµ(f) +

∫
φdµ for measures µ in K is attained.

• To prove that if the potential has low variation, the maximum obtained
over K is, in fact, a global maximum for the function hµ(f) +

∫
φdµ over

all invariant measures.

Let us begin by stating our precise conditions on the constants δ0 and β in
the theorem. According to [ABV00, Appendix], if f satisfies (H1) then there
exists γ0 < 1 depending only on (σ1, p, q) such that Lebesgue almost every point
spends at most a fraction γ0 of time inside Bp+1 ∪ · · · ∪Bp+q.

Reducing δ0 if necessary, we may find constants α > 0, as close to 1 as we
want, and c > 0 such that

(1 + δ0)α(1 + δ1)−(1−α) < e−2c < 1. (4)

We take α > γ0. By hypothesis (H3), m2 < M1 and m2 −m1 < β. So, taking
β and δ0 small, and α close enough to 1, we ensure that

αm2 + (1− α)M2 < γ0m1 + (1− γ0)M1 − l log(1 + δ0). (5)

Preparing the definition of K, we introduce the compact convex set Kα ⊂ I
given by

Kα = {µ ∈ I;µ(V ) ≤ α}.

Since Lebesgue almost every point spends at most a fraction γ0 < α of time
inside V ⊂ Bp+1 ∪ · · · ∪ Bp+q, all the ergodic absolutely continuous invariant
measures constructed in [ABV00] belong to Kα. In particular, Kα is non-
empty. We will see that Kα contains the equilibrium states of potentials with
low variation.

Let us recall the ergodic decomposition theorem, as it is proven in [Mañ87]:

Theorem 4.1. Given any invariant measure, there are ergodic invariant mea-
sures {µx : x ∈ M} depending measurably on the point x and such that∫

fdµ =
∫

(
∫

fdµx)dµ for every f ∈ L1(dµ).

Moreover, this decomposition {µx : x ∈ M} is essentially unique and, in fact,
µx = lim n−1

∑n−1
j=0 δfj(x) at µ-almost every point.

Our distinguished set of invariant measures is the non-empty set K ⊂ Kα

defined by
K = {µ ∈ I;µx ∈ Kα for µ-a.e. x}
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Definition 4.2. We say that a measure ν is f-expanding with exponent c if for
ν-almost every x ∈ M we have:

lim sup
n→+∞

1
n

n−1∑
j=0

log ‖Df(f j(x))−1‖ ≤ −2c < 0.

Remark 4.3. If ν is an ergodic invariant measure, by the ergodic theorem the
above definition is equivalent to

∫
log ‖Df−1‖dν ≤ −2c.

Remark 4.4. Given any ergodic invariant measure ν, the Lyapunov exponents
of (f, ν) are all positive if and only if ν is fN -expanding for some iterate N .
See [ABV00]. Also, if every invariant measure ν is f -expanding, then f is
a uniformly expanding map. See [AAS03]. In fact, the same conclusion holds,
more generally, if all invariant measures have only positive Lyapunov exponents.
See [Cao].

The next statement proves that all measures in K are f -expanding, with
uniform exponent. Let c > 0 be as in (4).

Lemma 4.5. Every measure in µ ∈ K is f-expanding with exponent c:

lim sup
n→+∞

1
n

n−1∑
j=0

log ‖Df(f j(x))−1‖ ≤ −2c < 0 for µ-almost every x ∈ M .

Proof. Suppose that µ ∈ K is ergodic. Since µ ∈ Kα and µ(V ) ≤ α, by the
ergodic theorem almost every point spends a fraction less than α inside V : there
exist an invariant set A with µ(A) = 1 such that for every x ∈ A,

lim
n→∞

1
n

n−1∑
i=0

χV (f i(x)) ≤ α.

By hypothesis (H1), we have that ‖Df(y)−1‖ ≤ (1 + δ0) for every y ∈ V .
Moreover, ‖Df(y)−1‖ ≤ (1 + δ1)−1 for y ∈ V c. This implies that

1
n

n−1∑
i=0

log ‖Df(f i(x))−1‖ ≤ 1
n

log(1 + δ0)αn(1 + δ1)−(1−α)n

≤ log(1 + δ0)α(1 + δ1)−(1−α) < −2c < 0

for all x ∈ A.
To finish , let H be the set of x that satisfy the condition in the conclusion

of the lemma. Since every µ ∈ K is µ = {µx} a convex combination of ergodic
measures µx in Kα, by the previous case, µa(H) = 1 for µ almost every a, and
this implies that µ(H) =

∫
µx(H)dµ = 1.

Now we need the notion of hyperbolic time, first introduced by Alves [Alv00].
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Definition 4.6. We say that n is a hyperbolic time for x with exponent c, if
for every 1 ≤ j ≤ n:

j−1∏
k=0

‖Df(fn−k(x))−1‖ ≤ e−cj .

To prove that for an f -expanding measure almost every point admits in-
finitely many hyperbolic times, we need the following lemma due to Pliss. See
for instance [ABV00] for a proof.

Lemma 4.7. Given A ≥ c2 > c1 > 0, let d0 = c2−c1
A−c1

. If a1, . . . , an are real
numbers such that ai ≤ A and

n∑
i=1

ai ≥ c2n

then there are integer numbers l > d0n and 1 < n1 < · · · < nl ≤ n so that, for
every 0 ≤ k ≤ ni and i = 1, . . . , l :

ni∑
j=k+1

aj ≥ c1(ni − n)

Using this lemma, we get

Lemma 4.8. For every invariant measure ν which is f-expanding with exponent
c, there exists a full ν-measure set H ⊂ M such that every x ∈ H has infinitely
many hyperbolic times ni = ni(x) with exponent c and, in fact, the density of
hyperbolic times at infinity is larger than some d0 = d0(c) > 0:

1.
j−1∏
k=0

‖Df−1(fni−k(x))‖ ≤ e−cj for every 0 ≤ j ≤ ni

2. lim inf
n→∞

]{0 ≤ ni ≤ n}
n

≥ d0 > 0.

Proof. By the definition of f -expanding measures, there exists a set H with
ν(H) = 1 such that given any x ∈ H we have

n−1∑
i=0

log ‖Df(f i(x))−1‖ ≤ −3c

2
n

for every n large enough. Then, it suffices to take A = sup
x∈M

− log ‖Df(x)−1‖,

c1 = c, c2 = 3c
2 and ai = − log ‖Df(f i−1(x))−1‖ in the previous lemma.

The next lemma asserts that points at hyperbolic times have unstable man-
ifolds with size uniformly bounded from below.
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Lemma 4.9. There exists ε0 > 0 such that for every x and ni a hyperbolic time
of x, if z ∈ M satisfies fni(z) ∈ Bε0(f

ni(x)) then

d(fni−j(x), fni−j(z)) ≤ e
−c
2 jd(fni(z), fni(x)) for every 0 ≤ j ≤ ni(x).

Proof. Since Df is uniformly continuous and a local diffeomorphism, there exists
ε0 such that for every ξ, η ∈ M with ξ ∈ Bε0(η) then

‖Df(ξ)−1‖
‖Df(η)−1‖

≤ e
c
2 .

By definition, if ni is hyperbolic time for x then
∏j−1

k=0 ‖Df(fni−k(x))−1‖ ≤
e−cj for every 0 ≤ j ≤ ni. Observe that d(fni−1(z), fni−1(x)) ≤ ε0. This is
because fni(z) ∈ Bε0(f

ni(x)) and, by the previous observation, the norm of the
derivarive of the inverse branch of f that sends fni(x) to fni−1(x) is less than
e−

c
2 restricted to Bε0(f

ni(x)). Arguing by induction,

j−1∏
k=0

‖Df(fni−k(z))−1‖ ≤ e
−c
2 j for all 0 ≤ j ≤ ni.

We conclude that d(fni−j(x), fni−j(z)) ≤ e
−c
2 jd(fni(x), fni(z)), proving the

lemma.

Since c is fixed, we will write simply ν-expanding to mean ν-expanding with
exponent c.

5 Existence of equilibrium states for continuous
low variation potentials

Our main aim in this section is to establish the existence of equilibrium states for
continuous low variation potentials, in order to prove theorem A. In particular,
this applies to φ = 0, which always has low variation. Thus, our construction
also yields maximal entropy measures for these transformations.

Beforehand, we use some results of the previous section to establish expan-
siveness for measures in K.

Definition 5.1. Given ε > 0 we define the set Aε(x) by:

Aε(x) = {y ∈ M ; d(fn(x), fn(y)) ≤ ε for every n ≥ 0}.

By definition, f is an expansive map with expansiveness constant ε̃ if and
only if Aε(x) = {x} for every x ∈ M and ε < ε̃.

Lemma 5.2. Suppose that µ ∈ K and let ε0 be as constructed in lemma 4.9.
Then for µ-almost every x ∈ M and any ε < ε0,

Aε(x) = {x}.
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Proof. By lemma 4.8 we have that almost every x ∈ M has infinitely many
hyperbolic times ni(x). By lemma 4.9, if z ∈ Aε(x) with ε < ε0 then for any ni

we have
d(x, z) ≤ e−

c
2 nid(fni(x), fni(z)) ≤ e−

c
2 niε.

Making ni →∞ we deduce that x = z.

Let P = {P1, . . . , Pl} be any partition of M in measurable sets with diameter
less than ε0. From the above lemma we get

Corollary 5.3. P is a generating partition for every µ ∈ K.

Proof. Define

P(n) = {C(n) = Pi0 ∩ · · · ∩ f−n+1(Pin−1)}, for each n ≥ 1.

We need to prove that given any measurable set A and given δ > 0 there exist
elements C

(n)
1 , . . . , C

(n)
m of P(n) such that

µ(
⋃

C
(n)
i ∆A) ≤ δ.

Consider K1 ⊂ A and K2 ⊂ Ac compact sets such that µ(K1∆A) ≤ δ and
µ(K2∆Ac) ≤ δ. Let r = d(K1,K2) > 0. Lemma 5.2 gives that if n is big
enough then diamP(n)(x) ≤ r

2 , for x in a set with µ-measure bigger than 1− δ.
Consider the sets C

(n)
1 , . . . , C

(n)
m ∈ P(n) that intersect K1. Then

µ(
⋃

C
(n)
i ∆A) = µ(

⋃
C

(n)
i −A) + µ(A−

⋃
C

(n)
i )

≤ µ(A−K1) + µ(Ac −K2) + δ ≤ 3δ.

This proves the claim.

Remark 5.4. Recalling the definition of entropy with respect to a partition Q,

Hµ(Q) =
∑
Q∈Q

−µ(Q) log µ(Q),

we have that for any partition Q such µ0(∂Q) = 0, for each Q ∈ Q, then the
function µ → Hµ(Q) is continuous in µ0. This imply that

µ 7→ hµ(f,P) = inf
n→∞

1
n

Hµ(P(n)).

is upper-semicontinuous in µ0.

Observe that, by corollary 5.3, P is a generating partition for every µ ∈ K.
So, as a consequence of Kolmogorov-Sinai’s theorem(see e.g. [Mañ87]),

Corollary 5.5. For every measure µ ∈ K we have hµ(f) = hµ(f,P).
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The next lemma will allow us prove that if φ has ρ-low variation, the function
Fφ restrict to K has a maximum µφ and this maximum is in fact an equilibrium
state for φ.

Lemma 5.6. All ergodic measures η outside K have small entropy: there exists
ρ < 1 such that if η ∈ Kc is ergodic then

hη(f) ≤ ρhtop(f).

Proof. As we are supposing that η is ergodic, we have that η(V ) > α, since every
ergodic measure µ such µ(V ) ≤ α lies in K. Denoting λ1(x) ≥ λ2(x) ≥ . . . λs ≥
0 > λs+1 · · · ≥ λl(x) the Lyapunov exponents in x, we know that λi = λi(x) is
constant η-almost everywhere. By the theorem of Oseledets [Ose68],∫

log ‖detDf‖dη =
l∑

i=1

λi. (6)

On the other hand, we have that λl > − log(1 + δ0), since by hyphotesis,
‖Df(x)−1‖ ≤ 1 + δ0. By Ruelle’s inequality (see [Rue78]) we have that

hη(f) ≤
s∑

i=1

λi =
∫

log ‖det Df(x)‖dη −
l∑

i=s+1

λi. (7)

Since m2 = sup
x∈V

log ‖det Df(x)‖ < M2 = sup
x∈V c

log ‖det Df(x)‖ and η(V ) > α

we have:

hη(f) ≤
∫

log |det Df |dη ≤ η(V )m2 + (1− η(V ))M2 + (l − s) log(1 + δ0)

≤ αm2 + (1− α)M2 + l log(1 + δ0)

Let µ0 be any ergodic absolutely continuous invariant measure as constructed
in [ABV00]. Since Lebesgue almost every point spends at most a fraction γ0 of
time inside W ⊂ Bp+1∪· · ·∪Bp+q, we have that µ0(W ) < γ0. As f is C1+α and
µ0 is absolutely continuous, we may use Pesin’s entropy formula (see [Pes77]):

hµ0(f) =
∫

log ‖detDf‖dµ0 ≥ µ0(W )m1 + (1− µ0(W ))M1

As µ0(W ) ≤ γ0 and m1 < M1, we conclude that

γ0m1 + (1− γ0)M1 ≤ hµ0(f).

By (5),
αm2 + (1− α)M2 < γ0m1 + (1− γ0)M1 − l log(1 + δ0).

So, we can choose ρ < 1 such that

hη(f) ≤ αm2 + (1− α)M2 + l log(1 + δ0) < ρ(γ0m1 + (1− γ0)M1)
< ρhµ0(f) ≤ ρhtop(f).

This proves lemma 5.6.
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Remark 5.7. Observe that if µ0 is some SRB measure for f , from the proof of
previous lemma, we may choose ρ <

hµ0
htop(f) .

Observe that it follows from the lemma 5.6 and the variational principle:

Corollary 5.8 (Variational Principle for expanding measures). If φ is
a ρ-low variation potential, then:

sup
ν∈K

hν(f) +
∫

φdν = P (φ)

In particular,

sup
ν∈K

hν(f) = htop(f)

Proof. Denote by E the set of all ergodic invariant probabilities, to prove the
lemma, we just need to prove that:

sup
ν∈K

Fφ(ν) = sup
ν∈E

Fφ(ν) (8)

Since

P (φ) = sup
ν∈E

Fφ(ν)

To prove 8, note that by lemma 5.6 we have that for ν ∈ Kc ergodic, then
hν(f) ≤ ρhtop(f). This imply that:

Fφ(ν) = hν(f) +
∫

φdν ≤ ρhtop(f) + max
x∈M

φ(x) < P (φ)

and this prove the corollary.

6 Proof of theorem A

First of all, observe that the previous corollary asserts that sup
ν∈K

Fφ(ν) = P (φ).

To prove that there exists some equilibrium states, consider a sequence of mea-
sures µk ∈ K such Fφ(µk) converge to P (φ).

Without loss of generality, we suppose that µk → µ weakly. We prove that
µ is an equilibrium state for φ and belongs to K.

First, we claim that Fφ(µ) = P (φ). In fact, fix P a partition with diameter
less than ε0, such µ(∂P ) = 0 for any P ∈ P. Observe that, since µk ∈ K, we
have that hµk

(f) = hµk
(f,P), by corollary 5.5. Then:

P (φ) = sup
ν∈K

Fφ(ν) = lim supFφ(µk) = lim suphµk
(f) +

∫
φdµk

14



As, by remark 5.4, the function ν → hν(f,P) is upper-semicontinuous in µ,
thus:

lim sup hµk
(f,P) +

∫
φdµk ≤ hµ(f,P) +

∫
φdµ ≤ hµ(f) +

∫
φdµ = Fφ(µ)

Then, we have

P (φ) = sup
ν∈K

Fφ(ν) ≤ Fφ(µ) ≤ P (φ),

which imply that µ is equilibrium state for φ.
Now, we prove that any measure η such Fφ(η) = sup

ν∈K
Fφ(ν) belongs to K,

proving that all equilibrium states belong to K.
In fact, if η = {ηx} is the ergodic decomposition of η, we should prove that

the set S = {x ∈ M ; ηx ∈ Kα} is a η-full measure set.
Using the fact that

hη(f) =
∫

hηx
(f) dη(x),

(see [Rok67], for instance), we have Fφ(η) =
∫

Fφ(ηx) dη(x)
Suppose by contradiction that η(Sc) > 0. Observe that if y ∈ Sc, then ηy is

in the hyphoteses of lemma 5.6 and thus:

Fφ(ηy) = hηy +
∫

φdηy < ρhtop(f) + max
x∈M

φ(x) < P (φ), (9)

since φ is a ρ-low variation potential.
As for every x ∈ S we have that Fφ(µx) ≤ P (φ), the inequality 9 implies

that Fφ(η) =
∫

Fφ(ηx) dη(x) < P (φ), which is a contradiction. Then, η(S) = 1
which imply, by the definition of K that η ∈ K and that all equilibrium states
are in K, completing the prove of theorem A.

7 Proof of Theorem B

We give a proof of the existence and uniqueness of a measure with maximum
entropy. Throughout, we assume the additional hypothesis (H4): existence of
a transitive Markov partition. Observe that we do not require this partition to
be generating.

Firstly, by Theorem A, there exists some measure µmax with maximal en-
tropy. Our strategy to prove its unicity is transfer our problem to a subshift
of finite type σ+ : Σ+ → Σ+ via ergodic conjugacy. If we denote ∂R =

d⋃
n=1

∂Ri and M̃ = M −
⋃

n≥0

f−n(∂R), we have that if µ is an ergodic mea-

sure such µ(∂R) = 1 then the entropy of µ is less than topological entropy,
since htop(f |∂R) < htop(f). Thus, we just consider invariant probabilities such
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µ(M̃) = 1. We may define a map Π : M̃ → Σ+ over a subshift of finite type Σ+

associate to some transition matrix A, by

Π(x) = (i0, . . . , in, . . . ) such that fn(x) ∈ Pin .

Observe that this map is a semiconjugacy between f and σ+. Define the cylin-
ders

[i] = [i0, . . . , in] = {x ∈ M ; 0 ≤ j ≤ n, f j(x) ∈ Rij
}.

Definition 7.1. Let (in) be the itinerary of x, defined by fn(x) ∈ Rin
, for each

n ≥ 0. We define [x] to be the set

[x] = [i0, ..., in, ...] = {y ∈ M ; fn(y) ∈ Rin
}.

Given an invariant measure η satisfying [x] = {x} for η-a.e., then Π is
an ergodic conjugacy between (f, η) and (σ+,Π?η), where Π?η) is defined by
Π?η)(A) = η(Π−1(A)). Observe that some measures can not be transported
to the shift but, by lemma 5.6 any f -invariant measure with big entropy has
hyperbolic times for almost everywhere. It allow us to prove [x] = {x} for η-a.e.,
which imply that η is ergodically equivalent to some measure in the shift.

Using the classical fact that transitive subshifts of finite type have exactly
one measure of maximal entropy, we prove that f admits only one measure
µmax with maximal entropy. If Σ+ is topologically mixing, then its maximal
measure is mixing ([Bow75]). Since, by Ornstein’s Theorem([Mañ87]), every
mixing Markov measure is Bernoulli, we have that µmax is Bernoulli.
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