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Abstract. Given a closed subset Λ of the open unit ball B1 ⊂
Rn, n ≥ 3, we will consider a complete Riemannian metric g
on B1 \ Λ of constant scalar curvature equal to n(n − 1) and
conformally related to the Euclidean metric. In this paper we
prove that every closed Euclidean ball B ⊂ B1 \ Λ is convex
with respect to the metric g, assuming the mean curvature of
the boundary ∂B1 is nonnegative with respect to the inward
normal.

1. Introduction

Let B1 denote the open unit ball of Rn, n ≥ 3. Given a closed subset
Λ ⊂ B1, we will consider a complete Riemannian metric g on B1 \Λ of con-
stant positive scalar curvature R(g) = n(n − 1) and conformally related to
the Euclidean metric δ. We will also assume that g has nonnegative bound-
ary mean curvature. Here, and throughout this paper, second fundamental
forms will be computed with respect to the inward unit normal vector.

In this paper we prove

Theorem 1.1. If B ⊂ B1 \ Λ is a standard Euclidean ball, then ∂B is
convex with respect to the metric g.

Here, we say that ∂B is convex if its second fundamental form is positive
definite. Since ∂B is umbilical in the Euclidean metric and the notion of an
umbilical point is conformally invariant, we know that ∂B is also umbilic in
the metric g. In that case ∂B is convex if its mean curvature h is positive
everywhere.

This theorem is motivated by an analogous one on the sphere due to R.
Schoen [15]. He shows that if Λ ⊂ Sn n ≥ 3, is closed and nonempty and g
is a complete Riemannian metric on Sn\Λ, conformal to the standard round
metric g0 and with constant positive scalar curvature n(n − 1), then every
standard ball B ⊂ Sn\Λ is convex with respect to the metric g. Schoen used
this geometrical result to prove the compactness of the set of solutions to
the Yamabe problem in the locally conformally flat case. Later, D. Pollack
also used Schoen’s theorem to prove a compactness result for the singular
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Yamabe problem on the sphere where the singular set is a finite collection
of points Λ = {p1, . . . , pk} ⊂ Sn, n ≥ 3 (see [14]).

In this context the Theorem 1.1 can be viewed as the first step in the
direction of proving compactness for the singular Yamabe problem with
boundary conditions.

We shall point out that the problem of finding a metric satisfying the
hypotheses of Theorem 1.1 is equivalent to finding a positive solution to an
elliptic PDE with critical Sobolev exponent. On the other hand this problem
is invariant by conformal transformations. So, by applying a convenient
inversion on the Euclidean space we may consider the same problem on an
unbounded subset of Rn. The idea of the proof is to show that, if ∂B is not
convex, then we can find a smaller ball B̃ ⊂ B with non convex boundary
either. To do this we will use the hypothesis on the mean curvature of ∂B1

and get geometrical information from that equation by applying the Moving
Planes Method as in [9]. The contradiction follows by the constructions of
theses balls.

2. Preliminaries

In this section we will introduce some notations and we shall recall some
results that will be used in the proof of Theorem 1.1. We will also describe
a useful example.

Let (Mn, g0) be a smooth orientable Riemannian manifold, possibly with
boundary, n ≥ 3. Let us denote by R(g0) its scalar curvature and by h(g0)
its boundary mean curvature. Let g = u

4
n−2 g0 be a metric conformal to g0.

Then the positive function u satisfies the following nonlinear elliptic partial
differential equation of critical Sobolev exponent{

∆g0u− n−2
4(n−1)R(g0)u + n−2

4(n−1)R(g)u
n+2
n−2 = 0 in M,

∂u
∂ν −

n−2
2 h(g0)u + n−2

2 h(g)u
n

n−2 = 0 on ∂M,
(1)

where ν is the inward unit normal vector field to ∂M .
The problem of existence of solutions to (1), when R(g) and h(g) are

constants, is referred to as the Yamabe problem. It was completely solved
when ∂M = ∅ in a sequence of works, beginning with H. Yamabe himself [18],
followed by N. Trudinger [17] and T. Aubin [1], and finally by R. Schoen [16].
In the case of nonempty boundary, J. Escobar solved almost all the cases
(see [6], [7]) followed by Z. Han and Y. Li [10], F. Marques [12] and others. In
this article, however, we wish to study solutions of (1), with R(g) constant,
which become singular on a closed subset Λ ⊂ M . This is the so called
singular Yamabe problem. This singular behavior is equivalent, at least in
the case that g0 is conformally flat, to requiring g to be complete on M \Λ.
The existence problem (with ∂M = ∅) displays a relationship between the
size of Λ and the sign of R(g). It is known that for a solution with R(g) < 0 to
exist, it is necessary and sufficient that dim(Λ) > n−2

2 (see [2], [13] and [8]),
while if a solution exists with R(g) ≥ 0, then dim(Λ) ≤ n−2

2 . Here dim(Λ)
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stands for the Hausdorff dimension of Λ. In this paper we will treat the case
of constant positive scalar curvature, which we suppose equal to n(n − 1)
after normalization. In this case the simplest examples are given by the
Fowler solutions which we will now discuss briefly.

Let u : Rn \ {0} → R be a positive smooth function such that{
∆u + n(n−2)

4 u
n+2
n−2 = 0 in Rn \ {0}, n ≥ 3,

0 is an isolated singularity.
(2)

In this case, g = u
4

n−2 δ is a complete metric on Rn \{0} of constant scalar
curvature n(n− 1).

Using the invariance under conformal transformations we may work in
different background metrics. The most convenient one here is the cylindri-
cal metric gcyl = dθ2 + dt2 on Sn−1 × R. In this case g = v

4
n−2 gcyl, where v

is defined in the whole cylinder and satisfies

d2v

dt2
+ ∆θv −

(n− 2)2

4
v +

n(n− 2)
4

v
n+2
n−2 = 0. (3)

One easily verifies that the solutions to equation (2) and (3) are related
by

u(x) = |x|
2−n

2 v(x/|x|,− log |x|). (4)
By a deep theorem of Caffarelli, Gidas and Spruck (see [3], Theorem 8.1)

we know that v is rotationally symmetric, that is v(θ, t) = v(t), and therefore
the PDE (3) reduces to the following ODE:

d2v

dt2
− (n− 2)2

4
v +

n(n− 2)
4

v
n+2
n−2 = 0.

Setting w = v′ this equation is transformed into a first order Hamiltonian
system {

dv
dt = w,
dw
dt = (n−2)2

4 v − n(n−2)
4 v

n+2
n−2 ,

whose Hamiltonian energy is given by

H(v, w) = w2 − (n− 2)2

4
v2 +

(n− 2)2

4
v

2n
n−2 .

The solutions (v(t), v′(t)) describe the level sets of H and we note that

(0, 0) and (±v0, 0), where v0 =
(

n−2
n

)n−2
4 , are the equilibrium points. We

restrict ourselves to the half-plane {v > 0} where g = v
4

n−2 gcyl has geometri-
cal meaning. On the other hand we are looking for complete metrics. Those
will be generated by the Fowler solutions: the periodic solutions around the
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equilibrium point (v0, 0). They are symmetric with respect to v-axis and
can be parametrized by the minimum value ε attained by v, ε ∈ (0, v0], (and
a translation parameter T ). We will denote them by vε. We point out that
v0 corresponds to the scaling of gcyl which makes the cylinder Sn−1×R have
scalar curvature n(n− 1). We observe that one obtains the Fowler solutions
uε in Rn \ {0} by using the relation (4).

We can now construct metrics satisfying the hypotheses of Theorem 1.1
(with Λ = {0}) from the Fowler solutions. To do this, we just take a Fowler
solution v defined for t ≥ t0, where t0 is such that we have w = dv

dt ≤ 0, or
equivalently,

h(g) = − 2
n− 2

v−
n

n−2
dv

dt
≥ 0.

We point out that, by another result of Caffarelli, Gidas and Spruck (see
Theorem 1.2 in [3]) it is known that, given a positive solution u to

∆u +
n(n− 2)

4
u

n+2
n−2 = 0 (5)

which is defined in the punctured ball B1 \ {0} and which is singular at the
origin, there exists a unique Fowler solution uε such that

u(x) = (1 + o(1))uε(|x|) as |x| → 0.

Therefore, from equation (4) (see also [11]), either u extends as a smooth
solution to the ball, or there exist positive constants C1, C2 such that

C1|x|(2−n)/2 ≤ u(x) ≤ C2|x|(2−n)/2.

3. Proof of Theorem 1.1

The proof will be by contradiction. If ∂B is not convex then, since it is
umbilical, there exists a point q ∈ ∂B such that the mean curvature of ∂B
at q (with respect to the inward unit normal vector) is H(q) ≤ 0. If we write
g = u

4
n−2 δ we have that u is a positive smooth function on B1 \Λ satisfying{

∆u + n(n−2)
4 u

n+2
n−2 = 0 in B1 \ Λ,

∂u
∂ν −

n−2
2 u + n−2

2 hu
n

n−2 = 0 on ∂B1.
(6)

Now, we will choose a point p ∈ ∂B, p 6= q and let us consider the
inversion

I : Rn \ {p} → Rn \ {p}.
This map takes B1 \ ({p} ∪ Λ) on Rn \ (B(a, r) ∪ Λ), where B(a, r) is an

open ball of center a ∈ Rn and radius r > 0 and Λ still denotes the singular
set. Let us denote by Σ the boundary of B(a, r), that is, Σ = I(∂B1).

The image of ∂B \ {p} is a hyperplane Π and by a coordinate choice we
may assume Π = Π0 := {x ∈ Rn : xn = 0}. We may suppose that the ball
B(a, r) lies below Π0. Notice that in this case Λ also lies below Π0.
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Since I is a conformal map we have I∗g = v
4

n−2 δ, where v is the Kelvin
transform of u on Rn \ (B(a, r) ∪ Λ).

Thus this metric has constant positive scalar curvature n(n− 1) in Rn \
(B(a, r) ∪ Λ) and nonnegative mean curvature h on Σ.

As before v is a solution of the following problem{
∆v + n(n−2)

4 v
n+2
n−2 = 0 in Rn \ (B(a, r) ∪ Λ),

∂v
∂ν + n−2

2r v + n−2
2 hv

n
n−2 = 0 on Σ.

Also, by hypotheses of contracdition, the mean curvature of the hyper-
plane Π0 at I(q) (with respect to ∂

∂xn ) is H ≤ 0. By applying the boundary
equation of the system (1) to Π0 we obtain ∂v

∂xn + n−2
2 Hv

n
n−2 = 0 on Π0.

Thus we conclude that ∂v
∂xn (I(q)) ≥ 0.

Now we start with the Moving Planes Method. Given λ ≥ 0 we will
denote by xλ the reflection of x with respect to the hyperplane Πλ := {x ∈
Rn : xn = λ} and set Ωλ = {x ∈ Rn \ (B(a, r) ∪ Λ) : xn ≤ λ}. We define

wλ(x) = v(x)− vλ(x) for x ∈ Ωλ,

where vλ(x) := v(xλ).
Since the infinity is a regular point of I∗g, we have that

v(x) = |x|2−n
(
a +

∑
bix

i|x|−2
)

+ O(|x|−n)

in a neighborhood of infinity. It follows from Lemma 2.3 of [3] that there
exist R > 0 and λ̄ > 0 such that wλ > 0 in interior of Ωλ \B(0, R), if λ ≥ λ̄.
Without loss of generality we can choose R > 0 such that B(a, r) ∪ Λ ⊂
B(0, R).

Now we note that v has a positive infimum, say v0 > 0, in B(0, R) \
(B(a, r) ∪ Λ). It follows from the fact that v is a classical solution to (5) in
B(0, R) \ (B(a, r) ∪ Λ). So, since v decays in a neighborhood of infinity, we
may choose λ > 0 large enough such that vλ(x) < v0/2, for x ∈ B(0, R) and
for λ ≥ λ. Thus, for sufficiently large λ we get wλ > 0 in int(Ωλ).

We also write
∆wλ + cλ(x)wλ = 0 in int(Ωλ), (7)

where

cλ(x) =
n(n− 2)

4
v(x)

n+2
n−2 − vλ(x)

n+2
n−2

v(x)− vλ(x)
.

Notice that, by definition, wλ always vanishes on Πλ. In particular, setting
λ0 = inf{λ > 0 : wλ > 0 on int(Ωλ),∀λ ≥ λ} we obtain by continuity that
wλ0 satisfies (7), wλ0 ≥ 0 in Ωλ0 and wλ0 = 0 on Πλ0 . Hence, by applying
the strong maximum principle, we conclude that either wλ0 > 0 in int(Ωλ0)
or wλ0 = v − vλ0 vanishes identically. We point out that the second case
occurs only if Λ = ∅.
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If wλ0 ≡ 0, then Πλ0 is a hyperplane of symmetry of v and therefore v
extends to a global positive solution of (5) on the entire Rn. Using [3], we
conclude that (B1, g) is a convex spherical cap and the result is obvious.

If wλ0 > 0 in int(Ωλ0) we apply the E. Hopf maximum principle to con-
clude

∂wλ0

∂xn
= 2

∂v

∂xn
< 0 in Πλ0 , (8)

and since ∂v
∂xn (I(q)) ≥ 0, we have λ0 > 0. In this case, by definition of λ0,

we can choose sequences λk ↑ λ0 and xk ∈ Ωλk
such that wλk

(xk) < 0.
It follows from the work in [11] that wλ achieves its infimum. Then we

may assume, without loss of generality, that xk is a minimum of wλk
in Ωλk

.
We have that xk /∈ Πk because wλk

always vanishes on Πλk
. So, either

xk ∈ Σ or is an interior point. Even when xk is an interior point we claim
that (xk)k is a bounded sequence. More precisely,

Claim 3.1. [see §2 in [5]] There exists R0 > 0, independent of λ, such that
if wλ solves (7) and is negative somewhere in int(Ω), and x0 ∈ int(Ω) is a
minimum point of wλ, then |x0| < R0.

For completeness we present a proof in the Appendix.
So, we can take a convergent subsequence xk → x̄ ∈ Ωλ0 . Since wλk

(xk) <
0 and wλ0 ≥ 0 in Ωλ0 we necessarily have wλ0(x̄) = 0 and therefore x̄ ∈
∂Ωλ0 = Πλ0 ∪ Σ.

If x ∈ Πλ0 then xk is an interior minimum point to wλk
and hence

∇wλ0(x̄) = 0 which not ocurrs by inequality (8). Thus we have x̄ ∈ Σ
and by E. Hopf maximum principle again,

∂wλ0

∂η
(x̄) =

∂v

∂η
(x̄)− ∂v

∂η
(x̄λ0) < 0, (9)

where η := −ν is the inward unit normal vector to Σ.
Now, we recall that

∂v

∂ν
+

n− 2
2r

v +
n− 2

2
hv

n+2
n−2 = 0 on Σ. (10)

Thus, since v(x̄) = v(x̄λ0) we have from (9) and (10) that the mean
curvature of Σλ0 at xλ0 (with respect to the inward unit normal vector) is
strictly less than −h.

Since h ≥ 0, we have that x̄λ0 is a non convex point in the reflected
sphere Σλ0 Considering the problem back to B1 we denote by K1 the ball
corresponding to the ball whose boundary is Σλ0 and by P1 the ball corre-
sponding to Π+

λ0
. Thus we have obtained a strictly smaller ball K1 ⊂ B with

non convex boundary which is the reflection of ∂B1 with respect to ∂P1.
We can repeat this argument to obtain a sequence of balls with non convex

points on the boundaries, B ⊃ K1 ⊃ · · · ⊃ Kj ⊃ · · · .
This sequence cannot converge to a point, since small balls are always

convex. On the other hand, if Kj → K∞ where K∞ is not a point, then
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K∞ ⊂ B is a ball in B1 \ Λ such that its boundary is the reflection of ∂B1

with respect to to itself, that is a contradiction.

Appendix A. Proof of Claim 3.1

First write (7) setting cλ(x) = 0 when wλ(x) = 0. Fix 0 < µ < n− 2 and
define g(x) = |x|−µ and φ(x) = wλ(x)

g(x) . Then, using the equation (7),

∆φ +
2
g
〈∇g,∇φ〉+

(
cλ(x) +

∆g

g

)
φ = 0.

By a computation we get ∆g = −µ(n− 2− µ)|x|−µ−2, that is,

∆g

g
= −µ(n− 2− µ)|x|−2.

On the other hand, the expansion of v in a neighborhood of infinity im-
plies that wλ(x) = O(|x|2−n) and consequently cλ(x) = O(|x|−n−2−2+n) =
O(|x|−4). Hence we obtain

cλ(x) +
∆g

g
≤ C(|x|−4 − µ(n− 2− µ))|x|−2).

In particular c(x) + ∆g
g < 0 for large |x|. Choose R0 with B(a, r) ∪ Λ ⊂

B(0, R0) such that

C(|x|−4 − µ(n− 2− µ))|x|−2) < 0, for |x| ≥ R0. (11)

Now let x0 ∈ int(Ωλ) so that wλ(x0) = inf int(Ωλ) wλ < 0.
Since lim|x|→+∞ φ(x) = 0 and φ(x) ≥ 0 on ∂Ωλ, there exists x̄0 such that

φ has its minimum at x̄0. By applying the maximum principle for φ at x̄0

we get cλ(x̄0) + ∆g(x̄0)
g ≥ 0 and by (11), |x̄0| < R0. Now we have

wλ(x0)
g(x̄0) ≤ wλ(x̄0)

g(x̄0) = φ(x̄0)

≤ φ(x0) = wλ(x0)
g(x0) .

This implies |x0| ≤ |x̄0| ≤ R0 and proves the claim.
Acknowledgements: The content of this paper is part of the author’s
doctoral thesis [4]. The author would like to express his gratitude to Prof.
Manfredo do Carmo for the encouragement and to Prof. Fernando Coda
Marques for many useful discussions during this work. While the author
was at IMPA - Rio de Janeiro, he was fully support by CNPq-Brazil.

References
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