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Abstract

Given a compact n-dimensional immersed Riemannian manifold Mn

we prove that if the Hausdorff dimension of the singular set of the Gauss
map is small, then Mn is homeomorphic to the sphere Sn.

Also, we define a concept of finite geometrical type and prove that fi-
nite geometrical type hypersurfaces with small set of points of zero Gauss-
Kronecker curvature are topologically the sphere minus a finite number
of points. A characterization of the 2n-catenoid is obtained.

1 Introduction

Let f : Mn → Nm be a C1 map. We denote by

rank(f) := min
p∈M

rank(Dpf).

If n = dimM = dimN = m, let C := {p ∈M : detDpf = 0} the set of
critical points of f and S := f(C) the set of critical values of f .

Now, let Mn a compact, connected, boundaryless, n-dimensional manifold.
Denote by Hs the s-dimensional Hausdorff measure and dimH(A) the Hausdorff
dimension of A ⊂Mn. For definitions see section 2 below. Let x an immersion
x : Mn → Rn+1. In this case, let G : Mn → Sn the Gauss map associated
to x, C the critical points of G and S the critical values of G. We denote
by dimH(x) := dimH(S). By Moreira’s improvement of Morse-Sard theorem
(see [Mo]), since G is a smooth map, we have that dimH(S) ≤ n− 1.

In other words, if Imm = {x : M → Rn+1 : x is an immersion}, then
sup

x∈Imm
dimH(x) ≤ n − 1. Clearly, this supremum could be equal to n − 1,

as some immersions of Sn in Rn+1 show (e.g., immersions with “cylindrical
pieces”). Our interest here is the number inf dimH(x). Before discuss this, we
introduce some definitions.
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Definition 1.1. Given an immersion x : Mn → Rn+1 we define rank(x) :=
rank(G), where G is the Gauss map for x.

Definition 1.2. We denote by R(k) the set R(k) = {x ∈ Imm : rank(x) ≥ k}.
Define by αk(M) the numbers:

αk(M) = inf
x∈R(k)

dimH(x), k = 0, . . . , n

If R(k) = ∅ we define αk(M) = n− 1.

Now, we are in position to state our first result:

Theorem A. If Mn is a compact manifold such that αk(Mn) < k − [n
2 ], for

some integer k, then Mn ' Sn ([r] is the integer part of r).

The proof of this theorem in the cases n = 3 and n ≥ 4 are quite different.
For higher dimensions, we can use the generalized Poincaré Conjecture (Smale
and Freedman) to obtain that the given manifold is a sphere. Since the Poincaré
Conjecture is not available in three dimensions, the proof, in this case, is a little
bit different. We use a characterization theorem due to Bing to compensate the
loss of Poincaré Conjecture, as commented before.

To prove this theorem in the case n = 3, we proceed as follows:

• By a theorem of Bing (see [B]), we just need to prove that every piecewise
smooth simple curve γ in M3 lies in a topological cube R of M3;

• In order to prove it, we shall show that it is enough to prove for γ ⊂
M −G−1(S) and that G : M −G−1(S) → S3 − S is a diffeomorphism;

• Finally, we produce a cube R̃ ⊃ G(γ) in S3 − S and we obtain R pulling
back this cube by G

Observe that by [C], in three dimensions always there are Euclidean codimen-
sion 1 immersions. In particular, it is reasonable to consider the following
consequence of the Theorem A:

Corollary 1.3. The following statement is equivalent to Poincaré Conjecture :
“Simply connected 3-manifolds admits Euclidean codimension one immersions
with rank at least 2 and Hausdorff dimension of the singular set for his Gauss
map less than 1”.

For a motivation of this conjecture and some comments about three dimen-
sional manifolds see the section 7.

Our motivation in this theorem are results by do Carmo, Elbert [dCE] and
Barbosa, Fukuoka, Mercuri [BFM]. Roughly speaking, they obtain topological
results about certain manifolds provides that there are special codimension 1
immersions of them. These results motivates the question : how the space of
immersions (extrinsic information) influenciates the topology of M (intrinsic
information)? The theorems A and B are a partial answer to this question.
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The theorems needs the concept of Hausdorff dimension. Essentially, Hausdorff
dimension is a fractal dimension that measures how “small” is a given set with
respect to usual “regular” sets (e.g., smooth submanifolds, that always has
integer Hausdorff dimension).

In section 6 of this paper we obtain the following generalizations of the-
orems A, B, the results of do Carmo, Elbert [dCE] and Barbosa, Fukuoka,
Mercuri [BFM].

Definition 1.4. Let M
n

a compact (oriented) manifold and p1, . . . , pk ∈ M
n
.

Let M = M
n − {p1, . . . , pk}. An immersion x : Mn → Rn+1 is of finite ge-

ometrical type (in a weaker sense than that of [BFM]) if Mn is complete in
the induced metric, the Gauss map G : Mn → Sn extends continuously to a
function G : M

n → Sn and the set G−1(S) has Hn−1(G−1(S)) = 0 (this last
condition occurs if rank(x) ≥ k and Hk−1(S) = 0).

The conditions in the previous definition are satisfied by complete hyper-
surfaces with finite total curvature whose Gauss-Kronecker curvature Hn =
k1 . . . kn does not change of sign and vanish in a small set, as showed by
[dCE]. Recall that a hypersurface x : Mn → Rn+1 has total finite curvature if∫

M
|A|ndM < ∞, |A| = (

∑
i

k2
i )1/2, ki are the principal curvatures. With this

observations, one has :

Theorem B. If x : Mn → Rn+1 is a hypersurface with finite geometrical type
and Hk−[ n

2 ](S) = 0, rank(x) ≥ k. Then Mn is topologically a sphere minus a
finite number of points, i.e., M

n ' Sn. In particular, this holds for complete
hypersurfaces with finite total curvature and Hk−[ n

2 ](S) = 0, rank(x) ≥ k.

For even dimensions, we follow [BFM] and improve theorem B. In particular,
we obtain the following characterization of 2n-catenoids, as the unique minimal
hypersurfaces of finite geometrical type.

Theorem C. Let x : M2n → R2n+1, n ≥ 2 an immersion of finite geometrical
type with Hk−n(S) = 0, rank(x) ≥ k. Then M2n is topologically a sphere minus
two points. If M2n is minimal, M2n is a 2n-catenoid.

2 Notations and Statements

Let Mn be a smooth manifold. Before starting the proof of the statements
we fix some notations and collect some (useful) standard propositions about
Hausdorff dimension (and limit capacity, another fractal dimension). For the
proofs of these propositions we refer [Fa].

Let X a compact metric space and A ⊂ X. We define the s-dimensional
Hausdorff measure of A by

Hs(A) := lim
ε→0

inf{
∑

i

(diam Ui)s : A ⊂
⋃
Ui, Ui is open and diam(Ui) ≤ ε,∀i ∈ N}.
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The Hausdorff dimension of A is dimH(A) := sup{d ≥ 0 : Hd(A) = ∞} =
inf{d ≥ 0 : Hd(A) = 0}. A remarkable fact is that Hn coincides with Lebesgue
measure in smooth manifolds Mn.

A related notion are the lower and upper limit capacity (sometimes called
box counting dimension) defined by

dimB(A) := lim inf
ε→0

log n(A, ε)/(− log ε), dimB(A) := lim sup
ε→0

log n(A, ε)/(− log ε),

where n(A, ε) is the minimum number of ε-balls that cover A. If d(A) =
dimB(A) = dimB(A), we say that the limit capacity of A is dimB(A) = d(A).

These fractal dimensions satisfy the properties expected for “natural” no-
tions of dimensions. For instance, dimH(A) = m ifA is a smoothm-submanifold.

Proposition 2.1. The properties listed below hold :

1. dimH(E) ≤ dimH(F ) if E ⊂ F ;

2. dimH(E ∪ F ) = max{dimH(E),dimH(F )};

3. If f is a Lipschitz map with Lipschitz constant C, then Hs(f(E)) ≤ C ·
Hs(E). As a consequence, dimH(f(E)) ≤ dimH E;

4. If f is a bi-Lipschitz map (e.g., diffeomorphisms), dimH(f(E)) = dimH(E);

5. dimH(A) ≤ dimB(A).

Analogous properties holds for lower and upper limit capacity. If E is count-
able, dimH(E) = 0 (although we may have dimB(E) > 0).

When we are dealing with product spaces, the relationship between Haus-
dorff dimension and limit capacity are the product formulae :

Proposition 2.2. dimH(E)+dimH(F ) ≤ dimH(E×F ) ≤ dimH(E)+dimB(F ).
Moreover, c ·Hs(E) ·Ht(F ) ≤ Hs+t(E × F ) ≤ C ·Hs(E), where c depends only
on s and t, C depends only on s and dimB(F ).

Before stating the necessary lemmas to prove the central results, we observe
that follows from lemma above that if M and N are diffeomorphic n-manifolds
then αk(M) = αk(N). This proves :

Lemma 2.3. The numbers

αk(M) = inf
x∈R(k)

dimH(x), for k = 0, . . . , n

are smooth invariants of M .

In particular, if n = 3 we also have that αk are topological invariants. It is
a consequence of a theorem due to Moise [M], which state that if M and N are
homeomorphic 3-manifolds then they are diffeomorphic. Then, the following
conjecture arises from the Theorem A
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Conjecture 1. If M3 is simply connected, then

α2(M3) = inf
x∈R(2)

dimH(x) < 1

R. Cohen’s theorem [C] says that there are immersions of compact n-manifolds
Mn in R2n−α(n) where α(n) is the number of 1’s in the binary expansion of n.
This implies, for the case n = 3, we always have that Imm 6= ∅. In particular,
the implicit hypothesis of existence of codimension 1 immersions in theorem A
is not too restrictive and our conjecture is reasonable. We point out that conjec-
ture 1 is true if Poincaré conjecture holds and, in this case, sup

x∈Imm
rank(x) = 3

and inf
x∈R(k)

dimH(x) = 0, for all 0 ≤ k ≤ 3. A corollary of the theorem A and

this observation is:

Corollary 2.4. The Poincaré Conjecture is equivalent to the conjecture 1.

From this, a natural approach to conjecture 1 is a deformation and desingu-
larization argument for metrics given by pull-back of immersions in Imm. We
observe that Moreira’s theorem give us α2(M3) ≤ 2. This motivates the fol-
lowing question, which is a kind of step toward Poincaré Conjecture. However,
this question is of independent interest, since it can be true even if Poincaré
Conjecture is false :

Question 1. For simply connected 3-manifolds, is true that α2(M3) < 2 ?

3 Some lemmas

In this section, we prove some useful facts in the way to establish the theo-
rems A, B. The first one relates the Hausdorff dimension of subsets of smooth
manifolds and rank of smooth maps :

Proposition 3.1. Let f : Mm → Nn a C1-map and A ⊂ N . Then dimH f−1(A)
≤ dimH(A) + n− rank(f).

Proof. The computation of Hausdorff dimension is a local problem. So, we
can consider p ∈ f−1(S), coordinate neighborhoods p ∈ U , f(p) ∈ V fixed
and f = (f1, . . . , fn) : U → V . Making a change of coordinates (which does
not change Hausdorff dimensions), we can suppose that f̃ = (f1, . . . , fr) is a
submersion, where r = rank(f). By the local form of submersions, there is
ϕ a diffeomorphism s.t. f̃ ◦ ϕ(y1, . . . , ym) = (y1, . . . , yr). This implies that
f ◦ ϕ(y1, . . . , ym) = (y1, . . . , yr, g(ϕ(y1, . . . , ym)). Then, if π denotes the pro-
jection in the r first variables, x ∈ f−1(S) ⇒ πϕ−1(x) ∈ π(S), i.e., f−1(S) ⊂
ϕ(π(S)×Rn−r). By properties of Hausdorff dimension (see section 2), we have
dimHf

−1(S) ≤ dimH(π(S)×Rn−r) ≤ dimHπ(S) + dimB(Rn−r) ≤ dimH(S) +
n− r. This concludes the proof.

The second proposition relates Hausdorff dimension with topological results.
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Proposition 3.2. Let n ≥ 3 and F is a closed subset of a n-dimensional
connected (not necessarily compact) manifold Mn. If the Hausdorff dimension
of F is strictly less than n − 1 then Mn − F is connected. If Mn = Rn or
Mn = Sn, F is compact and the Hausdorff dimension of F is strictly less than
n−k− 1 then Mn−F is k-connected (i.e., its homotopy groups πi vanishes for
i ≤ k).

Proof. First, if F is a closed subset of Mn with Hausdorff dimension strictly
less than n− 1, x, y ∈Mn − F , take γ a path from x to y in Mn. Since n ≥ 3,
we can suppose γ a smooth simple curve (by transversality). In this case, γ
admits some compact tubular neighborhood L. For each p ∈ γ, denote Lp the
L-fiber passing throught p. By hypothesis, dimH(F ∩ Lp) < n − 1 ∀p. In this
case, the tubular neighborhood L is diffeomorphic to γ×Dn−1, the fibers Lp are
p×Dn−1 (Dn−1 is the (n−1)-dimensional unit disk centered at 0) and γ is γ×0.
Then, since F is closed, it is easy that every x ∈ γ admits a neighborhood V (x)
s.t. for some sequence vn = vn(x) → 0 holds (V (x) × vn) ∩ F = ∅. Moreover,
again by the fact that F is closed, any vector v sufficiently close to some vn

satisfies (V (x) × v) ∩ F = ∅. With this in mind, by compactness of γ, we get
some finite cover of γ by neighborhoods as described before. This guarantees
the existence of v0 arbitrarily small s.t. (γ × v0) ∩ F = ∅. This implies that
M − F is connected.

Second, if F is a compact subset of Mn = Rn, dimHF < n − k − 1, let
[Γ] ∈ πi(Rn − F ) a homotopy class for i ≤ k. Choose a smooth representant
Γ ∈ [Γ]. Define f : Γ × F → Sn−1, f(x, y) := (y − x)/||y − x||. We will
consider in Γ× F the sum norm, i.e., if p, q ∈ Γ× F , p = (x, y), q = (z, w) then
||p− q|| := ||x− z||+ ||y − w||. For this choice of norm we have

||f(p)− f(q)|| = 1
||y − x|| · ||z − w||

·
∥∥∥{

(y−x) · ||z−w||+ ||y−x|| · (z−w)
}∥∥∥ ⇒

||f(p)− f(q)|| ≤
∥∥(y−x)·||z−w||−||z−w||·(w−z)

∥∥
||y−x||·||z−w|| +

∥∥||z−w||·(w−z)−||y−x||·(w−z)
∥∥

||y−x||·||z−w|| · ⇒

||f(p)−f(q)|| ≤ 1
||y − x||

·
{
||(z−x)+(y−w)||

}
+

1
||y − x||

·
{||(z−w)||−||(y−x)||}

 ⇒

||f(p)− f(q)|| ≤ 2 · C · ||p− q||
where C = 1/d(Γ, F ). We have d(Γ, F ) > 0 since these are compact disjoint
sets. This computation shows that f is Lipschitz.

Then, we have (prop. 2.1, 2.2) dimHf(Γ×F ) ≤ dimH(Γ×F ) ≤ dimB(Γ)+
dimH(F ) < i + n − k − 1 ≤ n − 1 ⇒ ∃ v /∈ f(Γ × F ). Now, F is compact
implies that there is a real N s.t. F ⊂ BN (0). Then, making a translation of
Γ at v direction, we can put, using this translation as homotopy, Γ outside BN .
Since Rn −BN is n-connected (for n ≥ 3), πi(Rn − F ) = 0. This concludes the
proof.

Remark 3.3. We remark that the hypothesis F is closed in the previous
proposition is necessary. For example, take F = Qn, Mn = Rn. We have
dimH(F ) = 0 (F is a countable set) but Mn − F is not connected.
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We can think proposition 3.2 as a weak type of transversality. In fact, if F
is a compact (n− 2)-submanifold of Mn then M −F is connected and if F is a
compact (n − 3)-submanifold of Rn (or Sn) then Rn − F is simply connected.
This follows from basic transversality. However, our previous proposition does
not assume regularity of F , but allows us to conclude the same results. It is
natural these results are true because Hausdorff dimension translates the fact
that F is, in some sense, “smaller” than a (n − 1)-submanifold N which has
optimal dimension in order to disconnect Mn.

For later use, we generalize the first part of proposition 3.2 as follows :

Lemma 3.4. Suppose that Γ ∈ πi(Mn) is Lipschitz (e.g., if i = 1 and Γ is a
piecewise smooth curve) and let K ⊂Mn compact, dimHK < n− i. Then there
are diffeomorphisms h of M , arbitrarily close to identity map, s.t. h(Γ)∩K = ∅.
In particular, if [Γ] ∈ πi(Mn) a homotopy class, K ⊂ Mn a compact set,
dimH(K) < n − i, there is a smooth representant Γ ∈ [Γ] s.t. Γ ∩K = ∅, i.e.,
Γ ∈ πi(Mn −K).

Proof. First, consider a parametrized neighbourhood φ : U → B3(0) ⊂ Rn and
suppose that Γ lies in V1, where V1 = φ−1(B1(0)). Let K1 = φ(K) ⊂ Rn and
Γ1 = φ(Γ) ⊂ Rn. Consider the map:

F : Γ1 ×K1 → Rn defined by F (x, y) = x− y

Observe that, since Γ is Lipschitz and φ is a diffeomorphism, dimBΓ = dimBΓ1 ≤
i. This implies that dimH(F (Γ1 ×K1)) < n, since dimH(K) < n− i. This im-
plies, in particular, that Rn − F (Γ1 × K1) is an open and dense subset, since
K is compact. Then, we may choose a vector v ∈ Rn − F (Γ1 ×K1) arbitrarily
close to 0 such (Γ1 + v) ⊂ B2(0). Since, v ∈ Rn − F (Γ1 × K1) we have that
(Γ1 + v) ∩K1 = ∅.

To construct h we consider a bump function β : Rn → [0, 1], such that
β(x) = 1 if x ∈ B1(0) and β(x) = 0 for every x ∈ Rn − B2(0). It is easy to see
that h defined by:

h(y) = y if x ∈M − U and h(y) = φ−1(β(φ(y))v + φ(y)),

is a diffeomorphism that satisfies h(Γ) ∩K = ∅, since (Γ1 + v) ∩K1 = ∅.
In the general case, we proceed as follows : first, considering a finite number

of parametrized neighbourhoods φi : Ui → B3(0), i ∈ {1, . . . , n} and Vi =
φ−1

i (B1(0)) covering Γ, by the previous case, there exists h1 arbitrarily close to

the identity such h1(Γ) ⊂
n⋃

i=1

Vi and such that h1(Γ ∩ V1) ∩ K = ∅. Observe

that, d(h1(Γ ∩ V1),K) > ε1 > 0, since h1(Γ ∩ V1) is a compact set.
The next step is to repeat the previous argument considering h2 arbitrarily

close to the identity, in such way that h2(h1(Γ) ∩ V2) ∩K = ∅ and h2(h1(Γ)) ⊂
n⋃

i=1

Vi. If d(h2, id) < ε1
2 then h2(h1(Γ) ∩ V1) ∩K = ∅. Repeating this argument

by induction, we obtain that h = hn ◦ · · · ◦ h1 is a diffeomorphism such that
h(Γ) ∩K = ∅. This concludes the proof.
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4 Proof of Theorem A in the case n = 3

Before giving a proof for theorem A, we mention a lemma due to Bing [B] :

Lemma 4.1 (Bing). A compact, connected, 3-manifold M is topologically S3 if
and only if each piecewise smooth simple closed curve in M lies in a topological
cube in M .

A modern proof of this lemma can be found in [R]. In modern language,
Bing’s proof shows that the hypothesis above imply that Heegaard splitting of
M is in two balls. This is sufficient to conclude the result.

In fact, Bing’s theorem is not stated in [B], [R] as above. But the lemma
holds. Actually, to prove that M is homeomorphic to S3, Bing uses only that,
if a triangulation of M is fixed, every simple polyhedral closed curve lies in a
topological cube. Observe that polyhedral curves are piecewise smooth curves,
if we choose a smooth triangulation (smooth manifolds always can be smooth
triangulated, see [T], page 194; see also [W], page 124).

Proof of theorem A in the case n = 3. If α2(M) < 1, there is an immersion x :
M3 → R4 s.t. rank(x) ≥ 2, dimH(x) < 1. Let G the Gauss map associated
to x. By propositions 3.2, 3.1, since dimH(S) < 1, M − G−1(S), S3 − S are
connected manifolds. Consider G : M−G−1(S) → S3−S. This is a proper map
between connected manifolds whose jacobian never vanishes. So it is a surjective
and covering map (see [WG]). Since, moreover, S3 − S is simply connected (by
proposition 3.2), G : M −G−1(S) → S3−S is a diffeomorphism. To prove that
M3 is homeomorphic to S3, it is necessary and sufficient that every piecewise
smooth simple closed curve γ ⊂M3 is contained in a topological cube Q ⊂M3

(by lemma 4.1).
In order to prove that every piecewise smooth curve γ lies in a topological

cube, observe that we may suppose that γ∩K = ∅ (here K = G−1(S)). Indeed,
by lemma 3.4 there exists a diffeomorphism h of M such h(γ)∩K = ∅. Then, if
h(γ) lies in a topological cube R, the γ itself lies in the topological cube h−1(R)
too, thus we can, in fact, make this assumption.

Now, since γ ⊂M−K andM−K is diffeomorphic to S3−S, we may consider
γ ⊂ R3 − S, S a compact subset of R3 with Hausdorff dimension less than 1
via identification by the diffeomorphism G and stereographic projection. In this
case, we can follow the proof of proposition 3.2 to conclude that f : γ×S → S2,
f(x, y) = (x − y)/||x − y|| is Lipschitz. Because dimB γ ≤ 1,dimH S < 1 (here
we are using that γ is piecewise smooth), we obtain a direction v ∈ S2 s.t.
F :=

⋃
t∈R

(Lt(γ)) is disjoint from S, where Lt(p) := p+ t · v. By compactness of

γ it is easy that F is a closed subset of Rn. This implies that 3 ε = d(F, S) > 0.
Consider Fε = {x : d(x, F ) ≤ ε} and Sε = {x : d(x, S) ≤ ε}. By definition
of ε > 0, Fε ∩ Sε = ∅, then we can choose ϕ : R3 → R a smooth function s.t.
ϕ|Fε

= 1, ϕ|Sε
= 0. Consider the vector field X(p) = ϕ(p) · v and let Xt, t ∈ R

the X-flow. We have Xt(p) = p + tv ∀p ∈ γ and Xt(p) = p ∀p ∈ S, for any
t ∈ R. Choosing N real s.t. S ⊂ BN (0) and T s.t. t ≥ T ⇒ Lt(γ)∩BN (0) = ∅,
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we obtain a global homeomorphism Xt which sends γ outside BN (0) and keep
fixed S, ∀ t ≥ T .

Observe that Xt(γ) is contained in the interior of a topological cube Q ⊂
R3 −BN (0). Then, observing that Xt is a diffeomorphism and that Xt(x) = x
for every x ∈ S and t ∈ R, we have that γ ⊂ X−t(Q) ⊂ R3 − S, ∀ t ≥ T . This
concludes the proof.

5 Proof of Theorem A in the case n ≥ 4

We start this section with the statement of generalized Poincaré Conjecture :

Theorem 5.1. A compact simply connected homological sphere Mn is home-
omorphic to Sn, if n ≥ 4 (diffeomorphic for n = 5, 6).

The proof of generalized Poincaré Conjecture is due to Smale [S] for n ≥ 5
and to Freedman [F] for n = 4. This lemma makes the proof of the theorem B
a little bit easier than the proof of theorem A.

Proof of Theorem A in the case n ≥ 4. If k = n, there is nothing to prove. In-
deed, in this case, G : Mn → Sn is a diffeomorphism, by definition. I.e., without
loss of generality we can suppose k ≤ n−1; αk(M) < k−[n

2 ] ⇒ ∃ x : Mn → Rn+1

immersion, rank(x) ≥ k, dimH(x) < k − [n
2 ]. The hypothesis implies that

M −G−1(S) is connected, Sn − S is simply connected and G is a proper map
whose jacobian never vanishes. By [WG], G is a surjective, covering map.
So, we conclude that G : M − G−1(S) → Sn − S is diffeomorphism. But
Sn − S is (n − 1 − k + [n

2 ])-connected, by proposition 3.2. In particular, be-
cause k ≤ n − 1, Sn − S is [n

2 ]-connected and so, using the diffeomorphism
G, M −K is [n

2 ]-connected, where K = G−1(S). It is sufficient to prove that
Mn is a simply connected homological sphere, by theorem 5.1. By lemma 3.4,
M −K is [n

2 ]-connected and dimH(K) < n− [n
2 ] (by prop.3.2) implies M itself

is [n
2 ]-connected. It is know that Hi(M) = L(Hi(M))⊕ T (Hi−1(M)), L and T

denotes the free part and the torsion part of the group. By Poincaré duality,
Hn−i(M) ' Hi(M). The fact that M is [n

2 ]-connected and these informations
give us Hi(M) = 0, for 0 < i < n. This concludes the proof.

6 Proof of theorems B and C

In this section we make some comments on extensions of theorem A. Although
these extensions are quite easy, they were omitted so far to make the presenta-
tion of the paper more clear. Now, we are going to improve our previous results.
First, all preceding arguments works with assumption that Hk−[ n

2 ](S) = 0 and
rank(x) ≥ k in theorems A, B (where Hs is the s-dimensional Hausdorff mea-
sure). We prefer consider the hypothesis as its stands in these theorems because
it is more interesting define the invariants αk(M). The reason to this “new”
hypothesis works is that our proofs, essentially, depends on the existence of
special directions v ∈ Sn−1. But this directions exists if the singular sets have
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Hausdorff measure 0. Second, M need not to be compact. It is sufficient that
M is of finite geometric type (here finite geometrical type is a little bit different
from [BFM]). We will make more precise these comments in proof of theorem
6.2 below, after recall the definition :

Definition 6.1. Let M
n

a compact (oriented) manifold and q1, . . . , qk ∈ M
n
.

Let Mn = M
n − {q1, . . . , qk}. An immersion x : Mn → Rn+1 is of finite

geometrical type if Mn is complete in the induced metric, the Gauss map G :
Mn → Sn extends continuously to a function G : M

n → Sn and the set
G−1(S) has Hn−1(G−1(S)) = 0 (this last condition occurs if rank(x) ≥ k and
dimH(x) < k − 1, or more generally, if rank(x) ≥ k and Hk−1(S) = 0).

As pointed out in the introduction, the conditions in the previous definition
are satisfied, for example, by complete hypersurfaces with finite total curvature
whose Gauss-Kronecker curvature Hn = k1 . . . kn does not change of sign and
vanish in a small set, as showed by [dCE]. Recall that a hypersurface x : Mn →
Rn+1 has total finite curvature if

∫
M
|A|ndM < ∞, |A| = (

∑
i

k2
i )1/2, ki are

the principal curvatures. Then, there are examples satisfying the definition.
With this observations, it is interesting to show our theorem C. Recall that the
statement of this theorem is :

Theorem 6.2 (Theorem B). If x : Mn → Rn+1 is a hypersurface with finite
geometrical type and Hk−[ n

2 ](S) = 0, rank(x) ≥ k. Then Mn is topologically
a sphere minus a finite number of points, i.e., M

n ' Sn. In particular, this
holds for complete hypersurfaces with finite total curvature and Hk−[ n

2 ](S) = 0,
rank(x) ≥ k.

Proof of theorem B. To avoid unnecessary repetitions, we will only indicate the
principal modifications needed in proof of theorems A, B by stating “new”
propositions, which are analogous to the previous ones, and making few com-
ments in their proofs. The details are left to reader.

Proposition 6.3 (Prop. 3.1’). Let f : Mm → Nn a C1-map and A ⊂ N . If
Hs(A) = 0, then Hs+n−rank(f)(f−1(A)) = 0.

Proof. It suffices to show that for any p ∈ f−1(A), there is an open set U =
U(p) 3 p s.t. Hs+n−r(f−1(A) ∩ U) = 0. However, if U is chosen as in proof
of proposition 3.1, we have f−1(A) ∩ U ⊂ ϕ(π(A) × Rn−r), where ϕ is a dif-
feomorphism, r = rank(f) and π is the projection in first r variables. By
propositions 2.1, 2.2, Hs+n−r(f−1(A) ∩ U) ≤ C1 · Hs+n−r(π(A) × Rn−r) ≤
C1 · C2 · Hs(A) = 0, where C1 depends only on ϕ and C2 depends only on
(n− r). This finishes the proof.

Proposition 6.4 (Prop. 3.2’). Let n ≥ 3 and F a closed subset of Mn s.t.
Hn−1(F ) = 0 then M−F is connected. If Mn = Rn or Mn = Sn, F is compact
and Hn−k(F ) = 0 then Mn − F is k-connected.
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Proof. First, if γ is a path in Mn from x to y, x, y /∈ F , we can suppose γ a
smooth simple curve. So, there is a compact tubular neighborhood L = γ×Dn−1

of γ. Since dim(Lp) = n− 1, F ∩ Lp has Lebesgue measure 0 for any p. Thus,
using that F is closed and γ is compact, we obtain some arbitrarily small vector
v s.t. (γ × v) ∩ F = ∅. Then, Mn − F is connected.

Second, if [Γ] ∈ πi(Rn − F ), i ≤ k is a homotopy class and Γ is a smooth
representant, define f : Γ×F → Sn−1, f(x, y) = (x−y)/||x−y||. Following the
proof of proposition 3.2, f is Lipschitz. Now, since Hn−k−1(F ) = 0, we have, by
proposition 2.2, Hn−1(Γ× F ) = 0. Thus, prop. 2.1 imply Hn−1(f(Γ× F )) = 0.
This concludes the proof.

Lemma 6.5 (Lemma 3.4’). Suppose that Γ ∈ πi(Mn) is Lipschitz and K ⊂
Mn is compact, Hn−i(K) = 0. Then there are diffeomorphisms h of M , arbi-
trarily close to identity map, s.t. h(Γ) ∩K = ∅.

Proof. If Γ is Lipschitz and Γ lies in a parametrized neighborhood, we can take
F : Γ×K → Rn, F (x, y) = x−y a Lipschitz function. Because Hn(Γ×K) = 0,
this imply Hn(F (Γ × K)) = 0. In general case we proceed as in proof of
Lemma 3.4. Take, by compactness, a finite number of parametrized neighbor-
hoods and apply the previous case. By finiteness of number of parametrized
neighborhoods and using that K is compact, an induction argument achieve
the desired diffeomorphisms h. This concludes the proof.

Returning to proof of theorem B, observe that in theorem A, we need G :
M

n−G−1
(S̃) → Sn−S̃ is diffeomorphism, where S̃ = S∪{G(qi) : i = 1, . . . , k}.

This remains true because (∗) Hk−[ n
2 ](S) = 0 implies Sn− S̃ is (n−1−k+[n

2 ])-
connected. In fact, this is a consequence of (∗), proposition 6.4 and {pi : i =
1, . . . , k} is finite (pi := G(qi)). Moreover, rank(x) ≥ k imply, by prop. 6.3, 6.4,
M −G−1(S̃) is connected. Indeed, these propositions says that rank(x) ≥ k ⇒
Hn−[ n

2 ](G−1(S)) = 0 and Hn−1(G−1(S)) = 0 ⇒ M − G−1(S) is connected.

However, if G
−1

(S̃) − (G−1(S) ∪ {qi : i = 1, . . . , k}) := A, then, for all x ∈ A,
(∗∗) detDxG 6= 0. In particular, since G(A) ⊂ {pi : i = 1, . . . , k}, (∗∗) imply
dimH(A) = 0. Then, Hn−[ n

2 ](G
−1

(S̃)) = Hn−[ n
2 ](G−1(S)) = 0. Thus, by [WG],

G is surjective and covering map (because it is proper and its jacobian never
vanishes). In particular, by simple connectivity, G is a diffeomorphism. At this
point, using the previous lemma and propositions, it is sufficient follow proof of
theorem A, if n = 3, and proof of theorem B, if n ≥ 4, to obtain M

n ' Sn.
This concludes the proof.

For even dimensions, we can follow [BFM] and improve theorem B :

Theorem 6.6 (Theorem C). Let x : M2n → R2n+1, n ≥ 2 an immersion of
finite geometrical type with Hk−n(S) = 0, rank(x) ≥ k. Then M2n is topologi-
cally a sphere minus two points. If M2n is minimal, M2n is a 2n-catenoid.

For sake of completeness we present an outline of proof of theorem C.
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Outline of proof of theorem D. Barbosa, Fukuoka, Mercuri define to each end
p of M a geometric index I(p) that is related with the topology of M by the
formula (see theorem 2.3 of [BFM]):

χ(M
2n

) =
k∑

i=1

(1 + I(pi)) + 2σm (1)

where σ is the sign of Gauss-Kronecker curvature and m is the degree of G :
Mn → Sn. Now, the hypothesis 2n > 2 implies (see [BFM]) I(pi) = 1,∀ i.
Since we know, by theorem 6.2, M

2n
is a sphere, we have 2 = 2k+2σm. But, it

is easy that m = deg(G) = 1 because G is a diffeomorphism outside the singular
set. Then, 2 = 2k + 2σ ⇒ k = 2, σ = −1. In particular, M is a sphere minus
two points.

If M is minimal, we will use the following theorem of Schoen : The only
minimal immersions, which are regular at infinity and have two ends, are the
catenoid and a pair of planes. The regularity at infinity in our case holds if
the ends are embedded. However, I(p) = 1 means exactly this. So, we can use
this theorem in the case of minimal hypersurfaces of finite geometric type. This
concludes the outline of proof.

Remark 6.7. We can extend theorem A in a different direction (without
mention rank(x)). In fact, using only that G is Lipschitz, it suffices assume
that Hn−[ n

2 ](C) = 0 (C is the set of points where Gauss-Kronecker curvature
vanishes). This is essentially the hypothesis of Barbosa, Fukuoka and Mer-
curi [BFM]. We prefer state theorems C and D as before since the classical
theorems concerning estimatives for Hausdorff dimension (Morse-Sard, Mor-
eira) deal only with the critical values S and, in particular, our corollary 2.4
will be more difficult if the hypothesis is changed to H1(C) = 0 for some im-
mersion x : M3 → R4 (although, in this assumption, we have no problems with
rank(x), i.e., this assumption has some advantages).

Remark 6.8. It is interesting to know if there are examples of codimension 1
immersion with singular set which is not in the situation of Barbosa-Fukuoka-
Mercuri and do Carmo-Elbert but it satisfies our hypothesis. This question was
posed to the second author by Walcy Santos during the Differential Geometry
seminar at IMPA. In fact, these immersions can be constructed with some extra
work. Some examples will be presented in another work to appear elsewhere.

7 Final Remarks

The corollary 1.3 is motivated by Anderson’s program for Poincaré Conjecture.
In order to coherently describe this program, we briefly recall some facts about
topology of 3-manifolds.

An attempt to better understand the topology of 3-manifolds (in partic-
ular, give an answer to Poincaré Conjecture) is the so called “Thurston Ge-
ometrization Conjecture”. Thurston’s Conjecture goes beyond Poincaré Con-
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jecture (which is a very simple corollary of this conjecture). In fact, its goal is
the understanding of 3-manifolds by decomposing them into pieces which could
be “geometrizated”, i.e., one could put complete locally homogeneous metric in
each of this pieces. Thurston showed that, in three dimensions, there are exactly
eight geometries, all of which are realizable. Namely, they are : the constant
curvature spaces H3, R3, S3, the products H2 × R, S2 × R and the twisted
products S̃L(2,R), Nil, Sol (for details see [T]). Thurston proved his conjecture
in some particular cases (e.g., for Haken manifolds). These particular cases are
not easy. To prove the result Thurston developed a wealth of new geometrical
ideas and machinery to carry this out. In few words, Thurston’s proof is made
by induction. He decomposes the manifold M in an appropriate hierarchy of
submanifolds Mk = M ⊃ · · · ⊃ union of balls = M0 (this is possible if M is
Haken). Then, if Mi−1 has a metric with some properties, it is possible glue
certain ends of Mi−1 to obtain Mi. Moreover, by a deformation and isometric
gluing of ends argument, Mi has a metric with the same properties of that from
Mi−1. This is the most difficult part of the proof. So, the induction holds and
M itself satisfies the Geometrization Conjecture.

Recently, M. Anderson [A] formulate three conjectures that imply Thurston’s
Conjecture. Morally, these three conjectures says that information about sigma
constant give us information about geometry and topology of 3-manifolds. We
recall the definition of sigma constant. If S(g) :=

∫
M
sg dVg is the total scalar

curvature functional (g is a metric with unit volume, i.e., g ∈M1, dVg is volume
form determined by g and sg is the scalar curvature) and [g] := {g̃ ∈ M1 : g̃ =
ψ2g, for some smooth positive function ψ} is the conformal class of g, then S is
a bounded below functional in [g]. Thus, we can define µ[g] = inf

g∈[g]
S(g) called

Yamabe constant of [g]. An elementary comparison argument shows µ[g] ≤
µ(Sn, gcan), where gcan is the canonical metric of Sn with unit 1 and positive
constant curvature. Then makes sense define the sigma constant :

σ(M) = sup
[g]∈C

µ[g] (2)

where C is the space of all conformal classes. The sigma constant is a smooth
invariant defined by a minimax principle (see equation 2). The first part of this
minimax procedure was solved by Yamabe [Y]. More precisely, for any conformal
class [g] ∈ C, µ[g] is realized by a (smooth) metric gµ ∈ [g] s.t. sgµ ≡ µ[g] (a such
gµ is called Yamabe metric). The second part of this procedure is more difficult
since it depends on the underlying topology. The sigma constant is important
since it is know that critical points of the scalar curvature functional S are
Einstein metrics. But it is not know if σ(M) is a critical value of S (partially
by non-uniqueness of Yamabe metrics). Then, if one show that is possible to
realize the second part of minimax procedure and that σ(M) is a critical value
of S, we obtain the Geometrization Conjecture.

This approach is very difficult. To see this, we remark that all of three An-
derson’s Conjectures are necessary to obtain the “Elliptization Conjecture” (the
particular case of Thurston’s Conjecture which implies Poincaré Conjecture). In
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others words, we have to deal with all cases of Thurston Conjecture to obtain
Poincaré Conjecture. This inspirates our definition of another minimax smooth
invariants. The advantage in these invariants is it does not requires construction
of metrics with positive constant curvature. But the disadvantage is we always
work extrinsically.

To finish the paper, we comment that there are many others attacks and
approachs to Poincaré Conjecture. For example, see [G] for an accessible ex-
position of V. Poénaru’s program and [P] for recent proof of one step of this
program. In the other hand, some authors (e.g., Bing [B]) believes that only
simple connectivity is not sufficient that a manifold be S3.

Added in proof. The first version of this paper was written in October 22,
2002, when the works of Perelman was not available. Nowdays, it is well-known
that Perelman’s works seems to give a complete answer to the geometrization
conjecture (and so, Poincaré conjecture). In particular, although our proof of
theorem A only uses results which are simpler than Perelman’s ones, this result
follows (as in proof of theorem A in the case n ≥ 4) from the Poincaré conjecture.
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