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Maceió-Brasil

Abstract. We discuss ill-posedness issues for the initial value problem associ-
ated to the Benney system. To prove our results we use the method introduced
by Kenig, Ponce and Vega [10] to show ill-posedness for some canonical disper-
sive equations.

1. Introduction

We consider the Initial Value Problem (IVP) associated to the Benney system,
that is,

(1.1)

⎧⎨⎩
i∂tu+ ∂2

xu = αuη + β|u|2u, t, x ∈ R,
∂tη + λ∂xη = γ∂x|u|2,
u(x, 0) = u0, η(x, 0) = η0,

where u is a complex valued function, η is a real valued function, λ = ±1 and α, β
and γ are real constants.

This system appears in general theory of water wave interaction in a nonlinear
medium and was introduced by Benney [3, 4]. The solvability of the system (1.1)
has been studied by several authors. Yajima and Oikawa [16] applied the inverse
scattering method and found N-soliton solutions of (1.1) when λ = 1, γ = −1 and
β = 0. Ma [12] proposed a simpler approach of the inverse scattering method.
Laurençot [11] considered the orbital stability for a weak solution in H1(R) with
β = 0. Tsutsumi and Hatano [14] showed local well-posedness for a resonant case
(λ = 0) in Hk+1/2(R) × Hk(R) with k = 0 when β = 0 and with k ∈ Z

+ when
β �= 0. They also obtained global well-posedness in similar spaces for λ = 0 and
α = γ = 1 via the conservation laws

(1.2) I1(t) =
∫ +∞

−∞
|u(x, t)|2dx = I1(0),

(1.3) I2(t) =
∫ +∞

−∞

(
η(x, t)|u(x, t)|2 + |ux(x, t)|2 + β

2 |u(x, t)|4 )
dx = I2(0),

and

(1.4) I3(t) =
∫ +∞

−∞

(
η2(x, t) + 2Im(u(x, t)ux(x, t)

)
dx = I3(0).

Moreover, using a Gauge transformation they also extended these results to the
case when the system is not necessarily resonant [15]. Bekiranov, Ogawa and
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2 ILL-POSEDNESS FOR THE BENNEY SYSTEM

Ponce [1] showed well-posedness for initial data (u0, η0) ∈ Hk(R) × Hk−1/2+ε(R)
with 1/2 ≤ k < 1 and ε > 0 when β �= 0 and (u0, η0) ∈ Hk(R) × L1/k(R) with
0 < k < 1/2 when β = 0. The best local well-posedness result for the IVP (1.1)
is in L2(R) × H−1/2(R), proved recently by Ginibre, Tsutsumi and Velo [9] and
Bekiranov, Ogawa and Ponce [2].

In this work, we discuss some ill-posedness issues regarding this system in the
focusing case1. In this case, our results show that the best local well-posedness
result, in Sobolev spaces, is for data in L2(R) × H−1/2(R) as was suggested by
Bekiranov, Ogawa and Ponce in [2]. The proof of these results is based on the
ideas used by Kenig, Ponce and Vega [10] to show ill-posedness for the nonlinear
Schrödinger, Korteweg de Vries and modified Korteweg-de Vries equations ( see
also Biagioni and Linares [6, 7] ). The notion of local well-posedness used in the
proof of the above results includes: existence, uniqueness and persistence property
of the solution in certain time interval and instead of continuous dependence of
the solution upon data we will require that the data-solution mapping (u0, η0) �−→
(u(t), η(t)), be uniformly continuous, where (u(t), η(t)) is the solution associated to
the IVP (1.1) with initial data (u0, η0) ∈ Hk(R)×H l(R) and ‖(u0, η0)‖Hk×Hl ≤ C0.
In the case when any one of the requirements in the notion of local well-podedness
fails, we say that the IVP (1.1) is ill-posed.

The following result is due to Ginibre, Tsutsumi and Velo [9].

Theorem 1.1. The Benney System (1.1) for initial data (u0, η0) ∈ Hk(R)×H l(R)
is locally well-posed provided

(1.5) −1/2 < k − l ≤ 1 and 0 ≤ l + 1/2 ≤ 2k.

The solution satisfies:

(1.6) u ∈ C([0, T ];Hk(R)), η ∈ C([0, T ];H l(R)).

Note that if k − l is fixed the lowest allowed values of (k, l) are attained for
k − l = 1

2 and are given by (k, l) = (0,−1/2). Moreover, local well-posedness was
shown by Bekiranov, Ogawa and Ponce [2] in the line l = k − 1/2 with k ≥ 0.

In both works due to Ginibre, Tsutsumi and Velo [9] and Bekiranov, Ogawa
and Ponce [2], the best result obtained for local well-posedness for the IVP (1.1)
is in the space L2(R) × H−1/2(R). Since scaling argument cannot be applied to
the Benney system to obtain a criticality notion it is not clear whether this result
is optimal. Here we show that this result is in fact the best possible to get local
well-posedness. For this, we prove the following theorem concerning ill-posedness
for the IVP (1.1).

Theorem 1.2. The Benney System (1.1) is ill-posed in Hk(R)×H l(R) for β < 0
provided

(1.7) −1/3 ≤ k < 0 and k(2l + 3) + 1 ≥ 0.

To prove Theorem 1.2 we will follow closely [10]. The main ingredient in our
proof is the use of the properties of the solitary wave solutions of the system (1.1).
The existence of such special functions for any speed of propagation, c > 0, and
the exponential decay are strongly applied.

Remark 1.3. For β ≥ 0, it is not possible to employ the same argument used in the
proof of Theorem 1.2. Nevertheless, we can give a criticality notion for the special

1Similar to the theory of the cubic NLS we say the Benney system is “focusing” in the case
β < 0.
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case β = λ = 0. Indeed, if (u, η) is a solution of the system (1.1) with initial data
(u0(x), η0(x)) then

uµ(x, t) = µ3/2u(µx, µ2t),
ηµ(x, t) = µ2η(µx, µ2t),

solves (1.1) with initial data uµ0 = µ3/2u0(µx) and ηµ0 = µ2η0(µx). Now taking
the homogeneous derivative of order k in L2 for uµ and l in L2 for ηµ, we obtain
the followings

‖Dk
xuµ‖2

L2 = µ2+2k‖Dk
xu‖2

L2 ,

‖Dl
xηµ‖2

L2 = µ3+2l‖Dl
xη‖2

L2 .

Hence, the notion of criticality is well defined for the Benney system with initial
data (u0, η0) ∈ Hk(R) ×H l(R), and the critical values turn out to be k = −1 and
l = −3/2. We note that the optimal relation between k and l is k − l = 1/2.

In Figure 1 we compare the results for local well-posedness given by Theorem
1.1 with our results for ill-posedness in Theorem 1.2.
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Figure 1. The region A contains indices (k,l) where local well-
posedness was shown in [2, 9], and the region B contains those
where ill-posedness is shown by our example.

2. Solitary waves

In this section we obtain solitary wave solutions for the Benney system.
We will look for solutions of equation (1.1) of the form:

(2.8) u(x, t) = eiωtφ(x − ct) and η(x, t) = ψ(x− ct),

where ω > 0, c > 0 and φ and ψ are two smooth L2-functions which decrease
rapidly to zero at infinity ( see [11] ).

Substituting (2.8) in (1.1) we have the following system of ordinary differential
equations for φ and ψ

(2.9)
{ −icφ′ − ωφ+ φ′′ = αφψ + β|φ|2φ

(λ− c)ψ′ = γ(|φ|2)′.
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Taking c > |λ| = 1, we obtain

(2.10) −icφ′ − ωφ+ φ′′ = (β +
αγ

λ− c
)|φ|2φ.

Setting φ(x) = e
icx
2 h(x), where h is a real valued function and using (2.10) we have

(2.11) h′′ − (ω − c2

4
)h− (β − αγ

c− λ
)h3 = 0.

We can see [5] and [13] for the following statements. The equation (2.11) has
positive, even, smooth and exponentially decreasing solutions if the conditions

(2.12) ω − c2

4
> 0 and β(c− λ) − αγ < 0,

are satisfied. The solution in this case is given by

(2.13) h(x) =
2µσ

e−σx + eσx
= µσ sech(σx),

where

(2.14) µ =

√
2(c− λ)

αγ − β(c− λ)
and σ =

√
ω − c2

4
.

The set of non trivial solutions of (2.11) in H1(R) is empty if the condition (2.12)
fails.

Remark 2.1. For c > 1 and ω > c2

4 , the condition (2.12) holds in the following
cases:

(i) β < 0, c > max
{

1, λ+ αγ
β

}
.

(ii) β = 0, αγ > 0.
(iii) β > 0, 1 < c < λ+ αγ

β .

We are interested in the case (i). Here, the speed of propagation (c > 1) is not
restricted to a bounded interval and this fact is strongly used in our argument.

Finally, we have the following expressions for the solitary waves:

(2.15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uc,ω(x, t) = eiωte

ic
2 (x−ct)µgσ(x− ct),

ηc,ω(x, t) = − 2γ
αγ−β(c−λ)g

2
σ(x− ct),

gσ(x) := σg(σx), g(x) = sech(x).

3. Proof of Theorem 1.2

The idea of the proof is the following: we will take two solitary waves as in (2.15)
as our initial data. We will see that under some assumptions they will remain close
at initial time and then we will see the evolution of the solutions associated to them
to find a contradiction.

Without loss of generality, we may assume β = −1 and α = γ = λ = 1 in (1.1).
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Taking

(3.16) N � 1, c = 2N and ω = N2 + σ2,

and using (2.15) we have that the pair

(3.17)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uσ,N(x, t) = e−it(N2−σ2)eiNxµ(N)gσ(x− 2tN),

ησ,N (x, t) = − 1
N g

2
σ(x − 2tN),

µ(N) =
√

2N−1
N ,

is the solution of the Benney system (1.1) with initial data (eiNxµ(N)gσ(x),− 1
N g

2
σ(x)).

Taking Fourier transform we have

(3.18) ûσ,N (ξ, t) = eit(N2+σ2−2Nξ)µ(N)ĝ
(ξ −N

σ

)
and

(3.19) η̂σ,N (ξ, t) = − σ

N
e−2itNξĝ2

( ξ
σ

)
.

Let us set

(3.20) Nj 	 N, N1 < N2, ωj = N2
j + σ2, j = 1, 2

and write

(3.21) uj(x, t) := uσ,Nj(x, t) and ηj := ησ,Nj (x, t).

The fundamental theorem of calculus and the mean value theorem yield the
following inequalities

|û1(ξ, 0) − û2(ξ, 0)|2 =
∣∣∣µ(N1)ĝ

(ξ −N1

σ

)
−µ(N2)g

(ξ −N2

σ

)∣∣∣2
� µ2(N1)

∣∣∣ĝ(ξ −N1

σ

)
−ĝ

(ξ −N2

σ

)∣∣∣2
+ |µ(N1) − µ(N2)|2

∣∣∣ĝ(ξ −N2

σ

)∣∣∣2
	

∣∣∣∫ 1

0

ĝ ′
(ξ −N2 + t(N2 −N1)

σ

)(N2 −N1

σ

)
dt

∣∣∣2
+ |µ(N1) − µ(N2)|2

∣∣∣ĝ(ξ −N2

σ

)∣∣∣2
≤ |N2 −N1|2σ−2

(∫ 1

0

∣∣∣ĝ ′
(ξ −N2 + t(N2 −N1)

σ

)∣∣∣dt)2

+ |µ′(N0)|2|N1 −N2|2
∣∣∣ĝ(ξ −N2

σ

)∣∣∣2,
with N0 ∈ (N1, N2), µ′(N0) = 1

2N
3
2
0
√

2N0−1
	 1

N2 . Hence

(3.22) ‖u1(·, 0) − u2(·, 0)‖2
k � |N1 −N2|2σ−2I1 +

|N1 −N2|2
N4

I2,

where

I1 =
∫

(1 + |ξ|2)k
(∫ 1

0

∣∣∣ĝ ′
(ξ −N2 + t(N2 −N1)

σ

)∣∣∣dt)2

dξ

and
I2 =

∫
(1 + |ξ|2)k

∣∣∣ĝ(ξ −N2

σ

)∣∣∣2dξ.
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Let

(3.23) σ = N−2k.

Taking k > − 1
2 (N−2k < N), ξ ∈ Bσ(tN1+(1−t)N2) then |ξ| 	 N for t ∈ [0, 1] and

using that ĝ ∈ S(R) and ĝ concentrates in B1(0) we have the following estimates
for I1 and I2.

I1 ≤
∫

(1 + |ξ|2)k
(∫ 1

0

∣∣∣ĝ ′
(ξ −N2 + t(N2 −N1)

σ

)∣∣∣2dt)dξ
=

∫ 1

0

∫
(1 + |ξ|2)k

∣∣∣ĝ ′
(ξ −N2 + t(N2 −N1)

σ

)∣∣∣2dξdt
≤ CN2kσ

∫ 1

0

∫ ∣∣∣ĝ ′
(
y − tN1 + (1 − t)N2

σ

)∣∣∣2dydt
≤ C‖ĝ ′‖2

L2

and

I2 	 N2k

∫ ∣∣∣ĝ(ξ −N2

σ

)∣∣∣2dξ
= N2kσ‖ĝ‖2

L2 = ‖g‖2
L2.

Using (3.22) and the estimates above it follows that

(3.24) ‖u1(·, 0) − u2(·, 0)‖2
k � |N1 −N2|2N4k +

|N1 −N2|2
N4

.

Now we consider the solutions uj(x, t), j = 1, 2, at time t = T . Observe that

(3.25) ‖uj(·, T )‖2
s = ‖uj(·, 0)‖2

s 	 N2sσ‖g‖2
L2 , s ∈ R, j = 1, 2.

If s = k then (3.25) gives

(3.26) ‖uj(·, T )‖2
k 	 ‖g‖2

L2.

On the the other hand, the frequencies of uj(·, T ), j = 1, 2, are localized in
B∗ = Bσ(N1) ∪Bσ(N2). Hence |ξ| 	 N and consequently

(3.27) ‖u1(·, T ) − u2(·, T )‖2
k 	 N2k‖u1(·, T ) − u2(·, T )‖2

L2.

Now, uj(·, T ) concentrates in Bσ−1(2TNj), j = 1, 2. Therefore, for given T > 0,
we take N1 and N2 such that

(3.28) T |N1 −N2| � σ−1 = N2k.

We have that there is no interaction of uj, j = 1, 2, at time t = T ; hence using
(3.25) with s = 0 we obtain

(3.29) ‖u1(·, T ) − u2(·, T )‖2
L2 	 ‖u1(·, T )‖2

L2 + ‖u2(·, T )‖2
L2 	 σ.

Combining (3.27) and (3.29) we obtain

(3.30) ‖u1(·, T ) − u2(·, T )‖2
k ≥ CN2kσ = C.

Taking

(3.31) N1 = N and N2 = N + δN−2k with δ > 0,

we get from (3.24)

(3.32) ‖u1(·, 0) − u2(·, 0)‖2
k ≤ Cδ2(1 +N−4(k+1)) ≤ Cδ2.

Here we have used that k > − 1
2 .
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Since k < 0, given δ, T > 0, we can take N so large that

(3.33) T |N1 −N2| = TδN−2k � N2k ⇐⇒ N−4k � 1
Tδ

,

and hence (3.28), (3.29) and (3.30) hold.
The initial data ηj(x, 0), j = 1, 2, satisfy

‖ηj(·, 0)‖2
l =

σ2

N2
j

∫
(1 + |ξ|2)l|ĝ2

( ξ
σ

)|2dξ
=

σ3

N2
j

∫
(1 + σ2y2)l|ĝ2(y)|2dy

	 σ3+2l

N2

∫
(N4k + y2)l|ĝ2(y)|2dy

≤ N−2(k(2l+3)+1)

⎧⎨⎩ ‖g2‖2
l , l ≥ 0

N4kl‖g2‖2
L2, l < 0

≤ C,

whenever

(3.34) k(2l + 3) + 1 ≥ 0, for l ≥ 0 and k ≥ −1
3
, for l < 0.

On the other hand,

‖η1(·, 0) − η2(·, 0)‖2
l = σ2

( 1
N1

− 1
N2

)2 ∫
(1 + |ξ|2)l|ĝ2

( ξ
σ

)|2dξ
	 σ3

N4
(N1 −N2)2

∫
(1 + σ2y2)l|ĝ2(y)|2dy

=
σ3+2l

N4
N−4kδ2

∫
(N4k + y2)l|ĝ2(y)|2dy

≤ δ2N−2(k(2l+5)+2)

⎧⎨⎩
‖g2‖2

l , l ≥ 0

N4kl‖g2‖2
L2 , l < 0

≤ Cδ2,

where in the last inequality we have used

(3.35) k(2l + 5) + 2 ≥ 0, for l ≥ 0 and k ≥ −2
5
, for l < 0.

Note that for k < 0 the condition (3.34) implies the condition (3.35). This completes
the proof of Theorem 1.2.
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