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Abstract

We classify the non-extendable immersed O(m)×O(n)-invariant minimal hypersurfaces
in the euclidean space R

m+n, m,n ≥ 3, analyzing also whether they are embedded or stable.
We show also the existence of embedded, complete, stable minimal hypersurfaces in R

m+n,
m + n ≥ 8, m,n ≥ 3 not homeomorphic to R

m+n−1 that are O(m)×O(n)–invariant.

1 Introduction and Statement of Results

The study of constant mean curvature hypersurfaces in euclidean spaces, particularly the min-
imal surfaces, has a very long history. One important issue in this area is the construction of
examples providing a testing ground for conjectures and theorems, since the work due to [8].

G-invariant constant mean curvature hypersurfaces, that is, invariant under the action of
some isometry group G, have proved to be manageable and useful. We may quote the classic
work by Delaunay [5] studying rotational (i.e., O(2)-invariant) constant mean curvature surfaces,
or the analysis and classification of O(n)-invariant minimal hypersurfaces in space forms carried
out by do Carmo and Dajczer in [4].

Following the classification of low cohomogeneity isometry groups stablished by Hsiang and
Lawson in [8], the next step was to study the O(m) × O(n)-invariant hypersurfaces with con-
stant mean curvature. For example, Hsiang, Teng and Yu constructed in [7] a family of such
hypersurfaces for m = n.

Techniques developed by Bombieri, de Giorgi and Giusti in [2] allowed them to show the
existence of complete O(m) × O(n)-invariant minimal hypersurfaces. Using these techniques,
Alencar [1] analyzed these hypersurfaces in the case m = n and classified them for m ≤ 3. It
is worth noting that these ideas have been applied successfully also to the null scalar curvature
case; see Palmas [9] and Sato [12].

The aim of this paper is to extend the classification theorems in [1] to arbitrary m,n. To
state our results we must fix some notations.

We will use the standard action of O(m) × O(n) over R
m+n = R

m × R
n. In this case, the

orbit space can be identified with Q = {(x, y);x ≥ 0, y ≥ 0}, in such a way that every interior
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point of Q corresponds to a principal orbit given as the product of spheres S
m−1(x)× S

n−1(y).
We define a hypersurface M of R

m+n invariant under this action by giving a generating profile
curve γ(t) = (x(t), y(t)) contained in Q, so that M is parametrized by

x̄(t, φ1, . . . , φm−1, ψ1, . . . , ψn−1) = (x(t)Φ(φ1, . . . , φm−1), y(t)Ψ(ψ1, . . . , ψn−1)) (1)

where Φ and Ψ are orthogonal parametrizations of a unit sphere of the corresponding dimension.
Figures 1 and 2 exhibit all cases of profile curves associated to complete immersed O(m)×

O(n)–invariant minimal hypersurfaces, characterized in Theorems 1.1 and 1.2 below.

Theorem 1.1. Given integers m,n ≥ 3 such that m+n ≤ 7, every non-extendable O(m)×O(n)-
invariant minimal hypersurface M ⊂ R

m+n falls in only one of the following types:

1. M is a cone Cm,n with vertex at the origin, generated by a ray y =
√

n−1
m−1 x.

2. M is an immersed complete hypersurface which intersects itself and Cm,n infinitely count-
able times, approaching this cone asymptotycally.

3. M is an embedded complete hypersurface intersecting Cm,n infinitely countable times, ap-
proaching this cone asymptotycally and intersecting orthogonally R

m × {0} or {0} × R
n.

(1) (2) (3)

Figure 1: Some examples of profile curves for m + n ≤ 7. Numbering corresponds to that in
Theorem 1.1.

Theorem 1.2. Given integers m,n ≥ 3 such that m+n ≥ 8, every non-extendable O(m)×O(n)-
invariant minimal hypersurface M ⊂ R

m+n falls in only one of the following types:

1. M is a cone Cm,n with vertex at the origin, generated by a ray y =
√

n−1
m−1 x.

2. M is an immersed complete hypersurface which does not intersect Cm,n, being doubly
asymptotic to this cone.

3. M is an embedded complete hypersurface which intersects Cm,n once, being doubly asymp-
totic to this cone.

4. M is an embedded complete hypersurface which does not intersect Cm,n, being asymptotic
to this cone and intersecting orthogonally R

m × {0} or {0} × R
n.
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(1) (2) (3) (4)

Figure 2: Some examples of profile curves for m + n ≥ 8. Numbering corresponds to that in
Theorem 1.2.

In the last part of this paper we discuss the stability of these hypersurfaces, obtaining the
following results.

Theorem 1.3. Let m,n ≥ 3 and m + n ≤ 7. Any complete O(m) × O(n)–invariant minimal
hypersurface M in R

m+n has infinite index.

Theorem 1.4. Let m,n ≥ 3 and m+n ≥ 8. The unique stable complete O(m)×O(n)–invariant
minimal hypersurfaces are those of the type (4) given in Theorem 1.2.

As a consequence of these classification results, we obtain examples of complete, stable
minimal hypersurfaces homeomorphic to R

m × S
n−1 or to S

m−1 × R
n. Our following existence

result should be compared with the theorem on the structure of this kind of hypersurfaces
obtained by Cao, Shen and Zhu (see [3]).

Theorem 1.5. There exist embedded, complete, stable minimal hypersurfaces in R
N , for N ≥ 8,

not homeomorphic to R
N−1.

2 The minimal hypersurface equation

Using the parametrization x̄ given in (1) and the normal vector

N(t, φ1, . . . , φm−1, ψ1, . . . , ψn−1) = (−y′(t)Φ(φ1, . . . , φm−1), x
′(t)Ψ(ψ1, . . . , ψn−1)),

it can be shown that the principal curvatures λ0, λi, λj , i = 1, . . . ,m− 1, j = m, . . . ,m+ n− 2
associated to M are:

λ0 =
−x′′y′ + x′y′′

[(x′)2 + (y′)2]3/2

λi =
y′

x
√

(x′)2 + (y′)2
, i = 1, 2, . . . ,m− 1

λj =
−x′

y
√

(x′)2 + (y′)2
, j = m, . . . ,m+ n− 2

The mean curvature of the hypersurface is given by

nH =
m+n−2∑

k=0

λk =
−x′′y′ + y′′x′

[(x′)2 + (y′)2]3/2
+

(m− 1)y′

x[(x′)2 + (y′)2]1/2
− (n− 1)x′

y[(x)2 + (y′)2]1/2
.
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Thus, to obtain a minimal hypersurface of this kind is equivalent to solve the following second
order differential equation:

−x′′y′ + y′′x′

(x′)2 + (y′)2
+

(m− 1)y′

x
− (n− 1)y′

y
= 0. (2)

Note that every curve γ(t) = (x(t)), y(t)) solving this last equation generates a whole family of
minimal hypersurfaces, since every homothetic curve γc(t) = (c x(t), c y(t)) is also a solution.

Since γ is a regular curve we may parametrize it by arc lenght. From now on we do that.Then
(2) becomes

−x′′y′ + y′′x′ +
(m− 1)y′y − (n− 1)x′x

xy
= 0. (3)

Note that x′′ and y′′ may be expressed explicitly in terms of x, x′, y, y′, as follows: since x′2+y′2 =
1, we obtain x′x′′ + y′y′′ = 0. This equation and (3) may be seen as a system of two linear
equations in x′′ and y′′ with non-zero determinant and solutions given by

x′′ = −(m− 1)y′y − (n− 1)x′x

xy
y′,

and

y′′ = −(m− 1)y′y − (n− 1)x′x

xy
x′.

To close this section, we may suppose that y = y(x) in equation (3), which becomes

d2y

dx2
= −(m− 1)y dy

dx − (n− 1)x

xy

(
1 +

(
dy

dx

)2
)
. (4)

On the other hand, if x = x(y), equation (3) can be written as

d2x

dy2
= −

(m− 1)y − (n− 1)dxdyx

xy

(
1 +

(
dx

dy

)2
)
. (5)

Expressions (4) and (5) show that our profile curves do not have singularities. In the next section
we will perform a useful transformation on this equation.

3 The associated vector field

Following [1] and [2] (see also [9] and [12]), we define the Bombieri–de Giorgi–Gusti coordinate
transformation (x, y) 7→ (u, v) given by

tanu =
y

x
, tan v =

y′

x′
, (6)

defined for (u, v) ∈ D̄, where

D =
(
0,
π

2

)
× (−π, π) .

It is easy to see that

u′ =
y′x− x′y
x2 + y2

and v′ = −x′′y′ + y′′x′.
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Multiplying (3) by x2y2

(x2+y2)3/2
u′ and using this change of coordinates, we get

v′[− cos u sin u sin (u− v)] + u′[(m− 1) sin v sin u− (n− 1) cos v cos u] = 0.

This last equation provides us with a system of ordinary differential equations for u, v and a
vector field X(u, v) = (X1(u, v), X2(u, v)) defined in D̄ given by

X1(u, v) = u′ = cosu sinu sin(u− v)
X2(u, v) = v′ = (m− 1) sin v sinu− (n− 1) cos v cosu.

(7)

Lemma 3.1. The vector field X has the following properties:

1. X1 vanishes along the lines u = 0, u = π/2, v = u and v = u− π.

2. X2 vanishes along the graphs of the smooth functions

v1(u) = arctan

(
n− 1

m− 1
cotu

)
,

v2(u) = arctan

(
n− 1

m− 1
cotu

)
− π;

defined for u ∈
[
0, π2

]
. Moreover, v1 and v2 are decreasing and we have

(a) limu→0 v1(u) = π/2 and limu→π
2
v1(u) = 0.

(b) limu→0 v2(u) = −π/2 and limu→π
2
v2(u) = −π.

(c) If n < m (n = m,n > m), then v1 and v2 are concave up (linear, concave down).

(d) v′1(0) = v′2(0) = −m−1
n−1 and v′1

(
π
2

)
= v′2

(
π
2

)
= − n−1

m−1 .

Proof. The proof is a straightforward calculation, solving directly X1 = 0 and X2 = 0 in (7).
For (c) and (d), note that for i = 1, 2 we have

dvi
du

= −
n−1
m−1

sin2 u+ ( n−1
m−1)

2 cos2 u
< 0

and
d2vi
du2

=
2 n−1
m−1 sinu cosu

(sin2 u+ ( n−1
m−1)

2 cos2 u)2

(
1−

(
n− 1

m− 1

)2
)
.

The graphs of the possible types of v1 and v2 are shown in Figure 3.
We obtain the singular points ofX by intersecting the graphs of the functions v = u, v = u−π

with those of v1(u) and v2(u); namely,

Corollary 3.2. The singular points of the vector field X in D̄ =
[
0, π2

]
× [−π, π] are

p1 =
(
0,−π

2

)
, p2 =

(
0,
π

2

)
, p3 =

(π
2
,−π

)
, p4 =

(π
2
, 0
)
, p5 =

(π
2
, π
)

and p6 = (α, α), p7 = (α, α− π), where α = arctan
√

n−1
m−1 ∈ (0, π/2).
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Figure 3: The graphs of the functions v1 = v1(u) and v2 = v2(u).

Due to the continuity of the vector field X we have the next result.

Corollary 3.3. The vector field X also satisfies:

X(0, v) =





(0, X+
2 ) for v ∈

(
−π,−π

2

)
;

(0, X−2 ) for v ∈
(
−π

2 ,
π
2

)
;

(0, X+
2 ) for v ∈

(
π
2 , π

)
.

X
(π
2
, v
)

=

{
(0, X−2 ) for v ∈ (−π, 0);
(0, X+

2 ) for v ∈ (0, π).

X(u, u) =

{
(0, X−2 ) for 0 < u < α;
(0, X+

2 ) for α < u < π
2 .

X(u, u− π) =

{
(0, X+

2 ) for 0 < u < α;
(0, X−2 ) for α < u < π

2 .

X (u, v1(u)) =

{
(X−1 , 0) for 0 < u < α;
(X+

1 , 0) for α < u < π
2 .

X (u, v2(u)) =

{
(X−1 , 0) for 0 < u < α;
(X+

1 , 0) for α < u < π
2 .

where X+
i > 0, while X−i < 0.

Proposition 3.4. For any integers m,n > 0, the singular points p1, p2, p3, p4 and p5 of the
vector field X are saddle points. If m + n ≤ 7, p6 is an unstable (repulsor) focus and p7 is a
stable (attractor) focus. If m+ n ≥ 8 then p6 is an unstable node and p7 is a stable node.

Proof. The linear part of X is given by

DXp =

(
cos 2u sin(u− v) + cosu sinu cos(u− v) − cosu sinu cos(u− v)
(m− 1) sin v cosu+ (n− 1) cos v sinu (m− 1) cos v sinu+ (n− 1) sin v cosu

)

and therefore,
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• DXp1
=

(
−1 0

m− 1 n− 1

)

• DXp2
=

(
1 0

m− 1 −(n− 1)

)

• DXp3
=

(
1 0

−(n− 1) −(m− 1)

)

• DXp4
=

(
−1 0
n− 1 m− 1

)

• DXp5
=

(
1 0

−(n− 1) −(m− 1)

)

These equalities prove the first claiming of the proposition. For p6 = (α, α), α ∈ (0, π/2), we
have cosα > 0, sinα > 0 and

DXp6
= sinα cosα

(
1 −1

m+ n− 2 m+ n− 2

)
.

If we set β = m+ n− 2, then it suffices to calculate the eigenvalues of

A =

(
1 −1
β β

)

that are given by

µ1 =
1

2

[
β + 1 +

√
(β + 1)2 − 8β

]

and

µ2 =
1

2

[
β + 1−

√
(β + 1)2 − 8β

]
.

This expression shows that p6 is a repulsor point.
Similarly, for p7 = (α, α− π) we have

DXp7
= sinα cosα

(
−1 1
−β −β

)
.

The eigenvalues of the matrix in this expression are given by

ν1 = −
1

2

[
β + 1 +

√
(β + 1)2 − 8β

]

and

ν2 = −
1

2

[
β + 1−

√
(β + 1)2 − 8β

]
.

This proves that p7 is an attractor point.
To finish the proof, we note that the discriminant (β + 1)2 − 8β is negative if and only if

β < 3 + 2
√
2. Therefore, µ1,2 are real numbers if and only if m + n ≥ 8, which ends the proof

of the Proposition.
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We now analyze the behavior of X in the regions D+
1 , D

+
2 , D

−
1 , D

−
2 defined by

D+
1 =

(
0,
π

2

)
×
(
0,
π

2

)
,

D+
2 =

(
0,
π

2

)
×
(π
2
, π
)
,

D−1 =
(
0,
π

2

)
×
(
−π
2
, 0
)
,

D−2 =
(
0,
π

2

)
×
(
−π,−π

2

)
.

Lemma 3.5. For any integers m,n ≥ 3, X does not have periodic orbits in any of the regions
D+

1 , D
−
2 , D

−
1 , D

+
2 .

Proof. First note that in D+
1 , the functions sinu, cosu, sin v, and cos v are positive. Calculating

the divergence of the vector field X, we have

DivX = [3 cos2 u+ (m− 2)] sinu cos v + [3 sin2 u+ (n− 1)] cosu sin v

If m,n ≥ 3, then the sign of Div depends on f(u, v) = sinu cos v and g(u, v) = cosu sin v.
Therefore, in D+

1 we have
DivX > 0.

Hence Bendixson criterion implies the claiming on D+
1 .

On the other hand on D−2 , the functions sin v and cos v are negative, so that

DivX < 0.

Using again Bendixson criterion, our assertion on D−2 follows.
Using a continuity argument, we see that X2(u, v) > 0 for

arctan

(
n− 1

m− 1
cotu

)
< v < π

and X2(u, v) < 0 for

−π
2
< v < arctan

(
n− 1

m− 1
cotu

)

Then, X does not have periodic orbits in the region

D−1 =
{
(u, v)| − π

2
< v < 0

}
.

The above argument proves also a similar claiming for X in D+
2 and ends the proof.

Therefore Poincaré–Bendixson Theorem implies the following results.

Corollary 3.6. For any m,n ≥ 3, the set
(
0, π2

)
×
[
−π

2 , π
]
is contained in the unstable manifold

W u(p6) of the singular point p6.

Corollary 3.7. For any m,n ≥ 3, the set
(
0, π2

)
× [−π, 0] is contained in the stable manifold

W s(p7) of the singular point p7.
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Now, we study the behavior of the part of the stable manifold W s(p2) contained in W u(p6).
Since along the vertical axis we have

X(0, v) =

{
(0, X−2 ) for v ∈

(
−π

2 ,
π
2

)
,

(0, X+
2 ) for v ∈

(
π
2 , π

)
,

and the linear part of X in p2 is

DXp2
=

(
−1 0

m− 1 n− 1

)
,

it follows that the unstable manifold W u(p2) is contained in the y-axis.

We have the following result for the stable manifold W s(p2).

Proposition 3.8. The vector field X has a unique integral curve φ(t) defined for all t ∈ R and
such that

lim
t→−∞

φ(t) = p6 = (α, α)

and
lim
t→∞

φ(t) = p2 =
(
0,
π

2

)
.

That is, {φ(t)} ⊂W s(p2).

Proof. The stable manifold theorem in dimension two implies the existence of one dimensional
stable manifold for p2. The tangent space of this manifold is generated by ξ = (ξ1, ξ2), an
eigenvector associated to the eigenvalue −1 of DXp2

. A direct calculation shows that we may
choose

ξ =

(
1,−m− 1

n

)
.

As for any m,n ∈ N we have the inequality

dv1
du

(0) = −m− 1

n− 1
< −m− 1

n
,

it follows that W s(p2) is transversal to the graph of the function v1 at p2; moreover, ξ points to
the region above of this graph.

For these reasons, the part of W s(p2) contained in (0, π/2) × [−π/2, π] is also contained in
W u(p6). Since these manifolds are one dimensional, we get an integral curve φ(t) of X, which
is defined for all t ∈ R since X is bounded in [0, π/2]× [−π/2, π]. Hence we have

lim
t→−∞

φ(t) = p6 and lim
t→∞

φ(t) = p2

and so the proof is complete.

We may prove in a similar way the existence of one dimensional manifolds invariant under
the flow of X connecting every saddle point p1, p2, p3, p4, p5 with p6 and p7. From now on,
W u(pi), W

s(pi), i = 1, . . . , 5, will denote the part of such invariant manifolds contained in
D̄ =

[
0, π2

]
× [−π, π].

On the other hand, since D̄ is compact and X is continuous, it follows that every orbit is
complete, that is, it is defined for all t ∈ R.

We summarize the above results as follows.
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Proposition 3.9. For m,n ≥ 3, every orbit {φ(t)} of X contained in D̄ =
[
0, π2

]
× [−π, π] is

defined for all t ∈ R, and falls into one of the following types:

1. {φ(t)} is contained in the v-axis and has p1 or p2 as α-limits or ω-limits. (The singular
orbits p1 and p2 belong to this case.)

2. {φ(t)} is contained in the line u = π
2 and has p3, p4 or p5 as α-limits or ω-limits. (The

singular orbits p3, p4 and p5 belong to this case.)

3. φ(t) ≡ p6 or φ(t) ≡ p7.

4. {φ(t)} ⊂W u(p6) ∩W s(p7). That is,

lim
t→−∞

φ(t) = p6 and lim
t→∞

φ(t) = p7.

5. {φ(t)} ⊂W u(p6) ∩W s(p8), with p8 = (α, α+ π). That is,

lim
t→−∞

φ(t) = p6 and lim
t→∞

φ(t) = p8.

6. {φ(t)} ⊂W u(p9) ∩W s(p7) where p9 = (α, α− 2π). That is,

lim
t→−∞

φ(t) = p9 and lim
t→∞

φ(t) = p7.

7. {φ(t)} =W s(p2) ⊂W u(p6). That is,

lim
t→−∞

φ(t) = p6 and lim
t→∞

φ(t) = p2.

8. {φ(t)} =W s(p4) ⊂W u(p6). That is,

lim
t→−∞

φ(t) = p6 and lim
t→∞

φ(t) = p4.

9. {φ(t)} =W u(p1) ⊂W s(p7). That is,

lim
t→−∞

φ(t) = p1 and lim
t→∞

φ(t) = p7.

10. {φ(t)} =W u(p3) ⊂W s(p7). That is,

lim
t→−∞

φ(t) = p3 and lim
t→∞

φ(t) = p7.

We now describe all non vertical orbits of X contained in the closure W u(p6) ∩W s(p7).
Since the behavior of the singular points in the other invariant 2-dimensional manifolds is the
same as in W u(p6) ∩W s(p7), the global behavior of X is represented in D̄.

Lemma 3.10. Every orbit {φ(t)} ⊂W u(p6)∩W s(p7) meets the line v = u or the line v = u−π.
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Proof. Any orbit φ(t) = (u(t), v(t)) contained in W u(p6) ∩W s(p7) may be reparametrized by
t = t(τ), τ ∈ (0, 1), in order to obtain a smooth curve ψ(τ) = φ(t(τ)) = (ũ(τ), ṽ(τ)) with
ψ(0) = p6 and ψ(1) = p7. As ũ(0) = ũ(1) = α, the mean value theorem implies the existence of
τ0 ∈ (0, 1) such that dũ

dτ (τ0) = 0. But dũ
dτ (τ0) =

du
dt (t0)

dt
dτ (τ0), where t0 = t(τ0). This fact implies

du
dt (t0) = 0, because dt

dτ (τ0) 6= 0 and t = t(τ) is a reparametrization.
In this way, there exists t0 ∈ R such that u′(t0) = 0. But the first coordinate of the field X

vanishes in W u(p6) ∩W s(p7) only along the lines v = u and v = u− π, which implies φ(t0) lies
in some of those lines.

Corollary 3.11. Given m,n ≥ 3 integers such that m + n ≤ 7, every orbit {φ(t)} contained
in W u(p6) ∩W s(p7) meets the line v = u and the line v = u − π infinitely countable times.
Moreover, every such orbit spirals out of p6 and spirals into p7.

Proof. This follows from the fact than p6 and p7 are hyperbolic foci.

Figure 4 shows the flows in the cases m+ n ≤ 7.

Figure 4: Flows for the cases m+ n ≤ 7.

Proposition 3.12. For any integers m,n ≥ 3 such that m+n ≥ 8, every orbit {φ(t)} contained
in W u(p6) ∩W s(p7) has one and only one of the following properties:

1. {φ(t)} meets once the line v = u and does not meet the line v = u − π. Moreover,

{φ(t)} meets once the curve v = v1(u) = arctan
(

n−1
m−1 cotu

)
and does not meet the curve

v = v1(u) = arctan
(

n−1
m−1 cotu

)
− π.

2. {φ(t)} meets once the line v = u and once the line v = u − π. Moreover, {φ(t)} meets
once the curve v = v1(u) = arctan

(
n−1
m−1 cotu

)
and meets once the curve v = v1(u) =

arctan
(

n−1
m−1 cotu

)
− π.
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3. {φ(t)} meets once the line v = u− π and does not meet the line v = u. Moreover, {φ(t)}
meets once the curve v = v1(u) = arctan

(
n−1
m−1 cotu

)
− π and does not meet the curve

v = v1(u) = arctan
(

n−1
m−1 cotu

)
.

Proof. Let β = m + n − 2 be as in Proposition 3.4. Let Y = (Y1(z, w), Y2(z, w)) be the field
given by the linearization of X at the point p7. Such linearization gives us the system of linear
differential equations

z′ = µ1z = Y1(z, w),

w′ = µ2w = Y2(z, w)

where

µ1 = −
1

2

[
β + 1 +

√
(β + 1)2 − 8β

]

and

µ2 = −
1

2

[
β + 1−

√
(β + 1)2 − 8β

]

are the eigenvalues obtained in Proposition 3.4, associated to the corresponding eigenvectors

ξ1 = (ξ11 , ξ
2
1) =

(
1,

−2β
3β + 1 +

√
(β + 1)2 − 8β

)

ξ2 = (ξ12 , ξ
2
2) =

(
1,

−2β
3β + 1−

√
(β + 1)2 − 8β

)

We remark that the second coordinates of these vectors are negative and ξ21 < ξ22 , which implies
that ξ1 points to the region above of ξ2.

In the system of coordinates (z, w) relative to the basis {ξ1, ξ2}, the flow of Y around the
origin behaves as shown in Figure 5.

Figure 5: Conjugation of the fields X and Y .

Hence Grobman-Hartman Theorem for C1-flows ([10], page 127) implies that the field X in
a neighborhood of p7 is C1-conjugated to the field Y near the origin.
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Since the orbits ψ−(t) and ψ+(t) on the z-axis are separatrices for the field Y , under the
conjugation they correspond locally to the separatrices of X; namely, φu

1(t) = W u(p1) and
φu
2(t) = W u(p3), respectively. These orbits are contained in W u(p6) ∩W s(p7) and converge to

p7 as t→∞ with the same direction as ξ1, this is, with slope −2β/
(
3β + 1 +

√
(β + 1)2 − 8β

)
.

The orbit ψ−(t) converges to zero with slope zero, together with a family of orbits of Y , as
shown in Figure 5. Conjugation implies the existence of a corresponding family of orbits of X

which together with φu
1(t) converge to p7 with the same slope −2β/

(
3β + 1 +

√
(β + 1)2 − 8β

)
.

Such family does not meet the line u = α and therefore does not meet the line v = u− π. From
Lemma 3.10, it follows that this family meets only v = u.

On the other hand, since X is continuous and transversal to the line u = α, it follows the
existence of a orbit {φ1(t)} ⊂W u(p6)∩W s(p7) bounding the aforementioned family, converging
asymptotically to p7 with direction ξ2, this is, with slope −2β/(3β+1−

√
(β + 1)2 − 8β). This

orbit φ1 corresponds under conjugation with the vertical orbit ψ1 of Y on the upper half part
of the plane z, w. We observe that φ1 does not meet transversally u = α, and therefore belongs
to the class of orbits meeting only the line v = u.

A linearization near the hyperbolic node p6 will give that the family of orbits considered above
will diverge from p6 with direction ξ1. In particular, those orbits of the family corresponding
to the region to the left of u = α (or the left lower part of the plane z, w) will cross the
horizontal line v = α after leaving p6 = (α, α). This fact implies the existence of a point
where v′ = 0, or X2 = 0. Recalling Lemma 3.1 we obtain a point (u, v) of the orbit where

v = v1(u) = arctan
(

n−1
m−1 cotu

)
. As the orbit does not meet u = α, it also does not meet

v = v2(u) = arctan
(

n−1
m−1 cotu

)
− π.

A similar analysis near the hyperbolic node p6 proves the existence of another family of orbits
of X in W u(p6) ∩W s(p7) such that every such orbit satisfy (3) in this Proposition; moreover,
this family will be bounded by a orbit {φ2(t)} which together with the family converges to p7
in the direction of ξ2, this is, with slope −2β/(3β + 1 +

√
(β + 1)2 − 8β).

The continuity of X and its transversality relative to the lines v = u, u = α and v = u − π
imply that every orbit in the region bounded by {φ1(t)} and {φ2(t)} satisfy conditions (2), which
finish the proof.

Proposition 3.12 completes our global description of the flow for X. Figure 6 shows the flows
in the case m+ n ≥ 8.

Remark 3.13. As shown in the proof, Proposition 3.12 implies the existence of an orbit {φ1(t)}
with property (1) separating the curves with property (1) from the curves with property (2).
Similarly, there is an orbit {φ2(t)} with property (3) separating curves with property (3) from
those satisfying property (2). They will play an important role in the conclusion of Theorem 1.2.

4 The profile curves

The aim of this section will be translate the behaviour of the orbits {φ(t)} of X described in
Proposition 3.9 into information about the corresponding profile curves γ.

Proposition 4.1. For m,n ≥ 3, let φ(t) = (u(t), v(t)) be an orbit of X contained in D̄ =[
0, π2

]
× [−π, π], defined for all t ∈ R and γ(t) = (x(t), y(t)) be the corresponding profile curve.

13



Figure 6: Flows for the cases m+ n ≥ 8.

Hence γ falls into one of the following types, numbered according to Proposition 3.9:

1. γ is contained in the x-axis.

2. γ is contained in the y-axis.

3. γ is a ray y =
√

n−1
m−1 x.

4–6. γ is doubly asymptotic to the ray y =
√

n−1
m−1 x.

7–8. γ is asymptotic to y =
√

n−1
m−1 x and meets the x-axis orthogonally. Moreover, it is a graph

over its projection on the x-axis.

9–10. γ is asymptotic to y =
√

n−1
m−1 x and meets the y-axis orthogonally. Moreover, it is a graph

over its projection on the y-axis.

Proof. First we analyze the singularities of X given in Corollary 3.2. We have u(t) ≡ 0 for p1
and p2, so equation (6) shows that y(t) ≡ 0. Similarly, u(t) ≡ π/2 for p3, p4, p5, so that x(t) ≡ 0.
These correspond to the cases (1) and (2) in the current Proposition. For p6 and p7 we have

u(t) ≡ α, so that y(t) = (tanα)x(t). Recalling that α = arctan
√

n−1
m−1 , we have case (3).

Now we analyze case (4). From Proposition 3.9 we know that {φ(t)} ⊂ W u(p6) ∩W s(p7),
which means that

lim
t→−∞

(u(t), v(t)) = (α, α) and lim
t→∞

(u(t), v(t)) = (α, α− π).

The first fact implies that the profile curve γ(t) satisfies

lim
t→−∞

y(t)

x(t)
= tanα, and lim

t→−∞

y′(t)

x′(t)
= lim

t→−∞

dy

dx
= tanα,

so that γ asymptotics y = (tanα)x at −∞.
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On the other hand, we have

lim
t→∞

y(t)

x(t)
= tanα, and lim

t→∞

y′(t)

x′(t)
= lim

t→∞

dy

dx
= tan(α− π).

As tanα = tan(α − π), we have that γ asymptotics y = (tanα)x at ∞. Hence we derive case
(4); cases (5) and (6) can be treated similarly.

The asymptotic behavior in cases (7)–(10) can be treated as above. In case (7) of Proposition
3.9, {φ(t)} =W s(p2) ⊂W u(p6), so that limt→∞ φ(t) = p2 =

(
0, π2

)
, which gives

lim
t→−∞

y(t)

x(t)
= 0, and lim

t→−∞

y′(t)

x′(t)
= lim

t→−∞

dy

dx
= tan

π

2
=∞,

these facts imply the desired orthogonality for case (7). To prove that this profile curve is a
graph over its projection on the x–axis, we note that the associated orbit (u(t), v(t)) is contained

in the set D+
1 =

(
0, π2

)
×
(
0, π2

)
. Since tan v(t) = y′

x′ =
dy
dx , we have that dy

dx > 0 for every point
of the profile curve. The implicit function theorem implies that the profile curve is a graph.

Cases (8)–(10) may be treated similarly. Therefore we derive the Lemma.

Lemma 4.2. The profile curve γ has an inflection point (when it is seen as the graph of a
function y = y(x) or x = x(y)) if and only if {φ(t)} either meets the curve v = v1(u) =

arctan
(

n−1
m−1 cotu

)
or meets the curve v = v2(u) = arctan

(
n−1
m−1 cotu

)
− π.

Proof. The proof follows from the fact that d2y
dx2 or d2x

dy2 in equations (4) and (5) change sign if
and only if

(m− 1)y
dy

dx
− (n− 1)x = 0 or (m− 1)y − (n− 1)

dx

dy
x = 0.

Each one of these equations is equivalent to

v1(u) = arctan

(
n− 1

m− 1
cotu

)
or v2(u) = arctan

(
n− 1

m− 1
cotu

)
− π

in the transformed plane (u, v).

Now we will study the cases m + n ≤ 7 and m + n ≥ 8 separately. First we will treat the
case m+ n ≤ 7.

Proposition 4.3. Let m,n ≥ 3 be integers such that m + n ≤ 7. Profile curves corresponding

to cases 4–10 in Proposition 3.9 intersect the ray y =
√

n−1
m−1 x infinitely countable times.

Proof. By Corollary 3.11, an orbit {φ(t)} of this kind spirals into p7, which means that the orbit

meets infinitely countable times the line u = α. As this line corresponds to the ray y =
√

n−1
m−1 x,

the Proposition follows.

Second we will treat the case m+ n ≥ 8.

Proposition 4.4. Let m,n ≥ 3 be integers such that m+n ≥ 8. The profile curves corresponding
to the case 4–10 in Proposition 3.9 may be classified as follows:
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1. Those profile curves whose corresponding orbit {φ(t)} satisfies (a) in Proposition 3.12 are

always below the ray y =
√

n−1
m−1 x and have only one inflection point.

2. Those profile curves whose corresponding orbit {φ(t)} satisfies (2) in Proposition 3.12 are
embedded and have only two inflection points.

3. Those profile curves whose corresponding orbit {φ(t)} satisfies (3) in Proposition 3.12 are

always above the ray y =
√

n−1
m−1 x and have only one inflection point.

Proof. Statements (1) and (3) are just reformulations of the behavior of the corresponding cases
in Proposition 3.12, using also Lemma 4.2.

On the other hand, by case (2) in Proposition 3.12 and Lemma 4.2 we have that a profile
curve γ of type (2) in the current proposition has only two inflection points.

We will prove now that γ does not have selfintersections. Let {φ(t)} an orbit associated to
γ. By (3) in Proposition 3.12, there exist t0 < t1 such that u′(t0) = u′(t1) = 0 and u(t0) < u(t1).

We claim that {φ(t)} restricted to [t0, t1] meets once every line u = β for u(t0) < β < u(t1).
If this is not the case, there exist β and t0 < t2 < t3 < t1 such that u(t2) = u(t3) = β. The mean
value theorem implies that there exists t∗ ∈ (t2, t3) such that u′(t∗) = 0. Therefore, {φ(t∗)} is
in the straight line v = u or in the line v = u− π, giving a contradiction.

This fact implies that γ restricted to [t0, t1] meets once every line y = (tanβ)x for u(t0) <
β < u(t1) and thus γ[t0, t1] is embedded in the plane (x, y). Note that the points γ(t0), γ(t1) lie
in opposite sides of the line y = (tanα)x, because {φ(t)} meets only once u = α. Similarly, the
sets γ(−∞, t0] and γ[t1,∞) lie in opposite sides of the line y = (tanα)x.

In this way, if the smooth curve γ has some selfintersection, it must occur in one side of
y = (tanα)x. But the existence of such a selfintersection will imply the existence of at least
three inflection points in γ, which contradicts what we have just proved.

5 Classification of the O(m)×O(n)-invariant minimal hypersur-

faces in R
m+n

In this section we finally translate the behavior of the trajectories of the vector field X and that
of the profile curves to derive the classification of our hypersurfaces. We will use the following
facts concerning a O(m)×O(n)-invariant hypersurface M in R

m+n: M is embedded if and only
if the associated profile curve γ(t) is embedded in the orbit space. Moreover, if the orbit of X
associated to the profile curve γ(t) is defined for all t ∈ R, then the corresponding hypersurface
is complete.(See e.g. Sato [12]).

We will use as main tool our Proposition 3.9. It is clear that the first two cases in that
Proposition give rise to “degenerate” manifolds of dimensions m or n.

Before stating and prove our classification theorems, it is now clear that the cases m+n ≤ 7
and m+ n ≥ 8 must be treated separately. We now describe the first case, whose proof follows
the same lines as in [1].

Theorem 5.1 (Theorem 1.1 of Section 1). Given integers m,n ≥ 3 such that m + n ≤ 7,
every non-extendable O(m)×O(n)-invariant minimal hypersurface M ⊂ R

m+n falls in only one
of the following types:

1. M is a cone Cm,n with vertex at the origin, generated by a ray y =
√

n−1
m−1 x.
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2. M is an immersed complete hypersurface which intersects itself and Cm,n infinitely count-
able times, approaching this cone asymptotically.

3. M is an embedded complete hypersurface intersecting Cm,n infinitely countable times, ap-
proaching this cone asymptotically and intersecting orthogonally R

m × {0} or {0} × R
n.

Proof. Case 1 follows from the corresponding case in Proposition 4.1. The proof for case 2 is
quite similar to that of Lemma 3.6 (ii) in [1]; we refer the reader to that paper and omit the
details.

As for the Case 3, the profile curve corresponds to a separatrix of the singularities of X
contained in

(
0, π2

)
× (−π, π). The claiming follows from Corollary 3.11 and cases 7–10 of

Proposition 4.1.

Now we will work out the case m+ n ≥ 8.

Theorem 5.2 (Theorem 1.2 of Section 1). Given integers m,n ≥ 3 such that m + n ≥ 8,
every non-extendable O(m)×O(n)-invariant minimal hypersurface M ⊂ R

m+n falls in only one
of the following types:

1. M is a cone Cm,n with vertex at the origin, generated by a ray y =
√

n−1
m−1 x.

2. M is an immersed complete hypersurface which does not intersect Cm,n, being asymptotic
to this cone.

3. M is an embedded complete hypersurface which intersects Cm,n once, being asymptotic to
this cone.

4. M is an embedded complete hypersurface which does not intersect Cm,n, being asymptotic
to this cone and intersecting orthogonally R

m × {0} or {0} × R
n.

Proof. Case 1 follows again from the corresponding case in Proposition 4.1.
In Case 2, the profile curves are associated with cases (1) and (3) given in Proposition 3.12.

Proposition 4.4 implies that every such profile curve does not meet the line y =
√

n−1
m−1x, being

doubly asymptotic to this line. This fact implies that the hypersurface M is asymptotic to the
cone Cm,n.

Case 3 corresponds to the class of orbits {φ(t)} satisfying (2) in Proposition 4.4. As noted at
the beginning of this section, the fact of these curves being embedded implies that the associated
hypersurface are embedded.

As for Case 4, we consider the profile curves of cases 7–10 in Proposition 4.1. Again, these
curves are embedded and so do the corresponding hypersurfaces.

In Cases 2–4, the profile curves are complete in the orbit space and thus the corresponding
orbits of X are complete. Therefore the theorem follows.
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6 On the stability of the O(m) × O(n)-invariant minimal hyper-

surfaces

In this section we analyze the stability of the hypersurfaces classified in the previous section.
We will follow closely Fischer-Colbrie and Schoen [6] (see also Sato [12]).

It is well known that a minimal immersion x̄ : M k → R
k+1 is a critical point for the area

functional
∫
D dM defined in every relatively compact domain D ⊂M k. More precisely, given a

smooth function f ∈ C∞c (D), the space of functions f : D → R with compact support, we use it
to define a smooth normal variation x̄t of x̄ = x̄0. If A(t) =

∫
x̄t(D) dM , then the first variation

A′(0) vanishes. The well-known second variation formula reads

A′′(0) = −
∫

D

(
f∆f + ‖B‖2f2

)
dM, (8)

where ∆ denotes the Laplace operator and ‖B‖2 is the squared norm of the second fundamental
form of x̄. We say that the immersion x̄ is stable if and only if A′′(0) ≥ 0 for every f ∈ C∞c (D).

Associated to the second variation formula we have the second order differential operator
T = ∆ + ‖B‖2I. T is elliptic and is called the Jacobi operator. The following proposition is
proved in [6], p. 201.

Proposition 6.1. A minimal immersion x̄ is stable if and only if there exists a positive function
h ∈ C∞c (D) defined in M satisfying Th = 0.

It is also known that, given a minimal orientable immersion x̄ with normal vector field N ,
the support function h = 〈x̄, N〉 satisfies Th = 0 (see [11], for example). Finally, we recall that
the index of T in D is the maximal dimension of a subspace of C∞c (D) where the quadratic form

I(f, f) = −
∫

D
f Tf dM

is negative definite. The index of T in Mk is

Ind(T,Mk) = sup
D⊂Mk

Ind(T,D),

the supremum taken over all relatively compact domains D in M k.
We are ready to state and prove the results on stability of our hypersurfaces.

Theorem 6.2 (Theorem 1.3 of Section 1). Let m,n ≥ 3 and m + n ≤ 7. Any complete
minimal O(m)×O(n)–invariant hypersurface M in R

m+n has infinite index.

Proof. A straightforward calculation shows that the support function h of M , expressed in the
parametrization (1), is given by

h(t) = −u′(t)(x(t)2 + y(t)2)

which clearly depends only on the profile curve. So it suffices to analyze the set where u′ vanishes.
Since for this case the singular points p6 and p7 are hyperbolic foci, every trajectory in

W u(p6) intersects infinitely countable times the line u = v. Thus, there exists a increasing,
unbounded sequence of points tk such that u′(tk) = 0. This fact implies the existence of an
increasing sequence of compact sets

D1 ⊂ D2 ⊂ · · ·Dk ⊂ · · · ⊂M
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such that h|∂Dk
= 0, where ∂Dk is the orbit of γ(tk) under the action of O(m) × O(n). The

Morse Index Theorem (see [13]) implies that Ind(T,M) is infinite.

Theorem 6.3 (Theorem 1.4 of Section 1). Let m,n ≥ 3 and m + n ≥ 8. The unique
stable complete minimal O(m)×O(n)–invariant hypersurfaces are those of the type (4) given in
Theorem 1.2.

Proof. In this case, the hyperbolic singularities are nodes. The separatrix curves φ(t) given by
Proposition 3.8 never intersect the lines u = v and v = u−π and thus u′(t) 6= 0 for every t. This
implies that the associated support functions never vanish along these curves. By Proposition
6.1, the corresponding hypersurfaces are stable. The uniqueness follows from Propositions 3.8
and 3.12.

Since the hypersurfaces associated to profile curves of type (4) in Theorem 1.2 are homeo-
morphic to [0,∞)× S

m−1 × S
n−1, i.e., to R

m × S
n−1 or to S

m−1 × R
n, we obtain:

Theorem 6.4 (Theorem 1.5 of Section 1). There exist embedded, complete, stable minimal
hypersurfaces in R

m+n, m + n ≥ 8, m ≥ 3, n ≥ 3 not homeomorphic to R
m+n−1 that are

O(m)×O(n)-invariant.
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