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Abstract. We consider classes of dynamical systems admitting Markov induced maps.
Under general assumptions, which in particular guarantee the existence of SRB measures,
we prove that the entropy of the SRB measure varies continuously with the dynamics. We
apply our result to a vast class of non-uniformly expanding maps of a compact manifold
and prove the continuity of the entropy of the SRB measure. In particular, we show that
the SRB entropy of Viana maps varies continuously with the map.

Contents

1. Introduction

In this work we address ourselves to the study of the continuity of the metric entropy
for endomorphisms. Entropy of dynamical systems can be regarded quite generally as a
measure of unpredictability. Topological entropy measures the complexity of a dynamical
system in terms of the exponential growth rate of the number of orbits which can be
distinguished over long time intervals, within a fixed small precision. Kolmogrov-Sinai’s
metric entropy is an invariant which, roughly speaking, measures the complexity of the
dynamical system in probabilistic terms with respect to a fixed invariant measure.

Considering that the observable properties are, in a physical sense, the properties which
hold on a positive volume measure set, one tries to verify the existence of invariant mea-
sures with “good” densities with respect to the volume measure. Let us explain this in
more precise terms. We consider discrete-time systems, namely, iterates of smooth trans-
formations f : M → M on a Riemannian manifold. We consider a probability measure
defined by a volume form on M that we call Lebesgue measure. A Borel probability mea-
sure µ on M is said to be a Sinai-Ruelle-Bowen (SRB) measure or a physical measure, if

Date: May 3, 2004.
1991 Mathematics Subject Classification. 37C40, 37C75, 37D25.
Key words and phrases. SRB measures, entropy, induced maps, non-uniform expansion.
Work carried out at USP-São Carlos, IMPA and University of Porto. JFA was partially supported by

FCT through CMUP. AT was supported by FCT on leave from USP-São Carlos and KO by Fapeal/Brazil
and Pronex-CNPq/Brazil.

1
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there exists a positive Lebesgue measure subset of points x ∈M for which

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)) =

∫
ϕdµ, for every ϕ ∈ C0(M). (1.1)

The set of points x ∈ M for which (??) holds is called the basin of the SRB measure µ.
Finding SRB measures for a given dynamical system may be a difficult task in general. By
Birkhoff’s ergodic theorem, one possible way to prove the existence of these physically rel-
evant measures is to construct absolutely continuous invariant ergodic probabilities. This
kind of measures is constructed in [?] for a vast class of diffeomorphisms and endomor-
phisms satisfying some weak hyperbolicity conditions.

Recently, there is an increasing emphasis on the study of the stability of the statistical
properties of dynamical systems. One natural formulation for this kind of stability corre-
sponds to the continuous variation of the SRB measures. Another interesting question in
this direction is to ask whether the entropy of the SRB measure varies continuously as a
function of the dynamical system. The question of the continuity of the entropy (topolog-
ical or metric) is an old issue, going back to the work of Newhouse [?], for example.

It is known that uniformly expanding C2 maps of a compact manifold admit a unique
SRB measure which is absolutely continuous with respect to Lebesgue measure and its
density varies continuously in the L1 norm. By means of this continuity and the en-
tropy formula for these systems one easily obtains the continuity of the SRB entropy. For
Axiom A diffeomorphisms the continuity of SRB measures and even more regularity is
established in [?] and [?]. The regularity of the SRB entropy for Axiom A flows is proved
in [?]. Analiticity of metric entropy for Anosov diffeomorphisms is proved in [?].

In this paper we present an abstract model and give sufficient conditions which imply
the continuous variation of the SRB entropy in quite general families of maps, including
maps with critical sets. Under the same hypotheses, the continuous variation of the SRB
measures is proved in [?]. It is important to remark that in the presence of critical points it
is not clear whether the continuous variation of absolutely continuous invariant measures
implies the continuous variation of their entropy or not. Let us observe that if we do not
have absolute continuity, the continuous variation of the SRB measures does not imply the
continuity of their entropy. For instance, in the quadratic family fa(x) = 4ax(1 − x) one
can find parameters a for which fa has an absolutely continuous SRB measure, and there is
a sequence an converging to a with fan having a unique SRB measure concentrated on an
attracting periodic orbit (sink). Furthermore, the Dirac measures supported on those sinks
converge to the SRB measure of fa. This shows that the convergence of SRB measures
does not necessarily imply the convergence of the SRB entropy.

In the sequel we show that a large class of non-uniformly expanding endomorphisms
(admitting critical sets) satisfy the conditions of our main result. We just suppose some
natural slow recurrence to the critical set to construct the absolutely continuous invariant
measures as in [?]. We apply our results to an open set of non-uniformly expanding
endomorphisms constructed by Viana [?], and prove the continuity of the entropy of the
unique absolutely continuous invariant measure for such endomorphisms.
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As far as we know our result is the first one giving continuity of the SRB entropy
for families of endomorphisms admitting critical points. Our approach is different from
the usual ways to prove the continuity of the entropy. We construct induced maps for
endomorphisms and relate the entropy of the SRB measure of the initial system and the
entropy of a corresponding measure of the induced system. Then we prove some continuity
results for the induced map and come back to the original map.

Acknowledgements. We are thankful to Marcelo Viana for several valuable discussions on
these topics.

2. Statement of results

Let M be a d-dimensional compact Riemannian manifold and denote the Lebesgue mea-
sure on M by m. We are interested in studying the continuity of the metric entropy of
smooth maps f : M →M with respect to some physically relevant measure on M .

A very important tool that we will be using are induced maps. Roughly speaking, an
induced map for a system f is a transformation F from some region of the ambient space
into itself, defined for each point as an iterate of f , where the number of iterations depends
on the point. If we carry out this process carefully, some asymptotic properties of f
(asymptotic expansion, for instance) can be verified as properties of F at the first iteration
(real expansion) for almost all points. A hard problem is to decode back the information
obtained for F into information about the original dynamical system.

2.1. Induced maps. Let F : ∆ → ∆ be an induced map for f defined in some topological
disk ∆ ⊂M , meanning that there exists a countable partition P of a full Lebesgue measure
subset of ∆, and there exists a return time function τ : P → Z+ such that

F |ω = f τ(ω)|ω, for each ω ∈ P .

We assume that the following conditions on the induced map F hold:

(i1) Markov: F |ω : ω → ∆ is a C2 diffeomorphism, for each ω ∈ P.
(i2) Uniform expansion: there exists 0 < κ < 1 such that for any ω ∈ P and x ∈ ω

‖DF (x)−1‖ < κ.

(i3) Bounded distortion: there exists K > 0 such that for any ω ∈ P and x, y ∈ ω∣∣∣∣detDF (x)

detDF (y)
− 1

∣∣∣∣ ≤ K dist(F (x), F (y)).

It is well known that a map F in these conditions has a unique absolutely continuous
ergodic invariant probability measure. Moreover, such a probability measure is equivalent
to the Lebesgue measure on ∆, and its density is bounded from above and from below by
constants. Proofs of these assertions will be given in Proposition ??. In this setting, we
also prove in Proposition ?? that if F : ∆ → ∆ is a piecewise expanding Markov induced
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map and µF is its absolutely continuous invariant probability measure, then the entropy
of F with respect to the probability measure µF satisfies:

hµF
(F ) =

∫
∆

log | detDF (x)| dµF . (2.1)

A natural question is how to obtain an absolutely continuous f -invariant probability
measure from the existence of such measure for F . The integrability of the return time
function τ : ∆ → Z+ with respect to the Lebesgue measure on ∆ is enough for the existence
of this measure. Indeed, if µF is the absolutely continuous F -invariant probability measure,
then

µ∗f =
∞∑

j=0

f j
∗ (µF | {τf > j}) (2.2)

is an absolutely continuous f -invariant finite measure. We denote by µf the probability
measure which is obtained from µ∗f by dividing it by its mass. Throughtly this paper we
are assuming the integrability of the return time.

A formula similar to the one displayed in (??) holds for C2 endomorphisms f of a compact
manifold M with respect to an absolutely continuous invariant probability measure µf . In
fact, by [?, Remark 1.2] the Jacobian function log | detDf(x)| is always integrable with
respect to µf . Then, by [?, Theorem 1.1], if

λ1(x) ≤ · · · ≤ λs(x) ≤ 0 < λs+1(x) ≤ · · · ≤ λd(x)

are the Lyapunov exponents at x, then

hµf
(f) =

∫
M

d∑
i=s+1

λi(x) dµf (x). (2.3)

We will refer to this last equality as the entropy formula for µf . We will see in Lemma ??
that in our situation f has all its Lyapunov exponents positive with respect to µf . Hence,
by Oseledets Theorem and the integrability of the Jacobian of f with respect to µf , we
have that the integral in (??) is equal to the integral of the Jacobian of f with respect to
the measure µf ; see Proposition ??.

One of the key results to prove our main result on continuity of the SRB entropy is the
following theorem which establishes the relation between the entropy of the original map
and the entropy of the induced map with respect to the appropriate measures.

Theorem A. If F is an induced map for f for which (i1), (i2) and (i3) hold, then

hµf
(f) =

1

µ∗f (M)
hµF

(F ).

The proof of this result will be given in Section ??.
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2.2. Continuity of entropy. Let U be a family of Ck maps, for some fixed k ≥ 2, from
a manifold M into itself. Assume that we may associate to each f ∈ U an induced Markov
map Ff : ∆ → ∆ defined on a same ball ∆ ⊂M . Given f ∈ U , let Pf denote the partition
into domains of smoothness of Ff , and τf : Pf → Z+ be its return time function. Let
also µFf

be the absolutely continuous Ff -invariant probability measure, µ∗f the measure
obtained from µFf

as in (??), and µf its normalization. For notational simplicity we
will denote the Markov induced map associated to f by F and its absolutely continuous
invariant probability measure by µF .

One of the main goals of this work is to study the continuous variation of the metric
entropy with respect to µf with the map f ∈ U . In order to be able to implement our
strategy we assume that the following uniformity conditions hold:

(u1) τf varies continuously in the L1 norm with f ∈ U .

(u2) κ and K associated to Ff as in (i2) and (i3) may be chosen uniformly for f ∈ U .

As we shall see in Proposition ??, these uniformity conditions assure in particular that
the (unique) absolutely continuous probability measure µF invariant by the map F varies
continuously (in the L1 norm) with f ∈ U .

Theorem B. If U is a family of Ck (k ≥ 2) maps from the manifold M into itself for
which (u1) and (u2) hold, then the entropy hµf

(f) varies continuously with f ∈ U .

Next we introduce a family of maps and present sufficient conditions for the validity of
the assumptions of the previous theorem. As we shall see these conditions are verified in
the set of maps introduced in [?].

2.3. Non-uniformly expanding maps. Let f : M → M be a C2 local diffeomorphism
in the whole manifold M except possibly in a set of critical points C ⊂ M . We say that
C is a non-degenerate critical set if the following conditions hold. The first one says that
there are constants B > 0 and β > 0 such that for every x ∈M \ C one has

(c1) ‖Df(x)‖ ≥ B dist(x, C)β.

Moreover, we assume that the functions log | detDf | and log ‖Df−1‖ are locally Lipschitz
at points x ∈M \C, with Lipschitz constant depending on dist(x, C): for every x, y ∈M \C
with dist(x, y) < dist(x, C)/2 we have

(c2)
∣∣log ‖Df(x)−1‖ − log ‖Df(y)−1‖

∣∣ ≤ B

dist(x, C)β
dist(x, y);

(c3)
∣∣log | detDf(x)−1| − log | detDf(y)−1|

∣∣ ≤ B

dist(x, C)β
dist(x, y).

Note that the above conditions give, for the particular case of critical points of one-
dimensional maps, the usual definition of a non-degenerate critical point. From now on we
assume that the critical sets of the maps we will be considering are always non-degenerate.

Given any δ > 0 and x ∈M \ C, we define the δ-truncated distance from x to C as

distδ(x, C) =

{
1, if dist(x, C) ≥ δ;
dist(x, C), otherwise.
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We say that f is non-uniformly expanding if the following two conditions hold:

(n1) there is λ > 0 such that for Lebesgue almost every x ∈M

lim sup
n→∞

1

n

n−1∑
i=0

log ‖Df(f i(x))
−1‖ < −λ;

(n2) for every ε > 0 there exists δ > 0 such that for Lebesgue almost every x ∈M

lim sup
n→+∞

1

n

n−1∑
j=0

− log distδ(f
j(x), C) ≤ ε.

We often refer to (n2) by saying that orbits have slow recurrence to the critical set C. In
the case that C is equal to the empty set we simply ignore the slow recurrence condition.

Remark 2.1. It is worthy to be stressed that slow recurrence condition is not needed in
all its strength for our results. In fact, condition (n2) is needed just for distortion control
reasons. As observed in [?, Remark 1.3], it is enough to have it for some sufficiently small
ε > 0 and conveniently chosen δ > 0; see also [?, Proposition 3.5] and [?, Remark 3.6].

Condition (n1) implies that the expansion time function

E(x) = min

{
N ≥ 1:

1

n

n−1∑
j=0

log ‖Df(f j(x))−1‖ ≤ −λ
2
, for all n ≥ N

}
is defined and finite Lebesgue almost everywhere in M . The recurrence time function

R(x) = min

{
N ≥ 1 :

1

n

n−1∑
j=0

− log distδ(f
j(x), C) ≤ 2ε, for all n ≥ N

}
,

is also defined and finite Lebesgue almost everywhere in M if the slow recurrence condi-
tion (n2) holds.

We think of E(x) and R(x) as the time we need to wait before the exponential derivative
growth kicks in. These depend on asymptotic statements and we have no a-priori knowledge
about how fast these limits are approached or with what degree of uniformity for different
points x. We define the tail set (at time n)

Γf
n =

{
x ∈M : E(x) > n or R(x) > n

}
. (2.4)

This is the set of points which at time n have not yet achieved either the uniform expo-
nential growth or the slow recurrence given by conditions (n1) and (n2). If the critical set
is empty, we simply ignore the recurrence time function and consider only the expansion
time function in the definition of Γf

n.
It is proved in [?] that every C2 non-uniformly expanding map f admits some SRB

measure. Moreover, it follows from [?, Lemma 5.6] that if f is transitive, then it has a
unique SRB measure µf which is ergodic and absolutely continuous with respect to the
Lebesgue measure, whose basin covers a full Lebesgue measure subset of points in M .
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The results in [?] show that if the decay of the Lebesgue measure of Γf
n holds with some

uniformity in f ∈ N , then the SRB measure µf varies continuously in the L1 norm with
f ∈ N . Here we deduce the continuity of the SRB entropy in the same context.

Corollary C. Let N be a set of Ck (k ≥ 2) transitive non-uniformly expanding maps (with
same constants ε, δ and λ). If there are C > 0 and γ > 1 such that Leb(Γf

n) ≤ Cn−γ, for
all f ∈ N and n ≥ 1, then the entropy hµf

(f) varies continuously with f ∈ N .

This is a direct consequence of Theorem ?? and the fact that, by [?, Proposition 5.3],
maps in a family N as in the hypotheses of Corollary ?? necessarily admit induced maps
for which uniformity conditions (u1) and (u2) hold. The proof of [?, Proposition 5.3] uses
ideas from [?], where piecewise expanding induced maps for non-uniformly expanding maps
are constructed. Transitivity is a useful ingredient for that construction.

2.3.1. Viana maps. Here we present an open class V of transformations where the as-
sumptions of Corollary ?? hold. This is an open set of maps from the cylinder into itself
constructed in [?]. As pointed out in that paper, the choice of the cylinder S1 × R as
ambient space is rather arbitrary, and the construction extends easily to more general
manifolds. In what follows we briefly describe the maps in the set V , and refer the reader
to [?, ?, ?, ?, ?] for more details.

Let a0 ∈ (1, 2) be such that the critical point x = 0 is pre-periodic under iteration by
the quadratic map p(x) = a0 − x2, and let b : S1 → R be a Morse function, for instance,
b(t) = sin(2πt). We take S1 = R/Z. For each α > 0, consider the map

fα : S1 × R → S1 × R, fα(θ, x) = (ĝ(θ), q̂(θ, x)),

where ĝ is the uniformly expanding map of the circle defined by ĝ(θ) = dθ (mod 1), for
some integer d ≥ 2, and q̂(θ, x) = a(θ)− x2 with a(θ) = a0 + αb(θ). We take V as a small
C3 neighborhood of fα, for some (fixed) sufficiently small α > 0. Observe that each f ∈ V
has a whole curve of critical points near {x = 0} for small enough α > 0. The C3 topology
is used in [?] in order to simplify some technical points. In particular, it is possible to
prove C2 proximity of the critical sets for C3 nearby maps. We do believe that the results
in [?] and the subsequent works for Viana maps still hold in the C2 topology.

One can easily check that for α > 0 small enough there is an interval I ⊂ (−2, 2) such
that fα sends S1×I into the interior of S1×I. Thus, any map f close to fα still has S1×I
as a forward invariant region, and so it has an attractor inside this invariant region. The
attractor is precisely the set Λ = ∩n≥0f

n(S1 × I).
It is proved in [?] that any f ∈ V admits some absolutely continuous ergodic invariant

probability measure. Moreover, the results in [?] show that these systems have a unique
SRB measure whose basin covers a full Lebesgue measure set of points in S1 × I, and the
densities of these SRB measures vary continuously in the L1 norm with the map. To obtain
the uniqueness of the SRB measure, they prove that f is topologically mixing, in a strong
sense: for every open set A ⊂ S1 × I there is some n = n(A) ∈ Z+ such that fn(A) = Λ.
In particular, maps belonging to V are transitive.

The non-uniform expansivity of Viana maps is proved in [?]. Specific rates for the decay
of the tail set are known in this case: there exist constants C, γ > 0 (uniformly in the
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whole set V) such that

m(Γf
n) ≤ C exp(−γ

√
n), for all f ∈ V and n ≥ 1;

see [?, Section 2.4] and [?, Section 6.2] for details. Thus we may apply Corollary ?? to the
set of Viana maps and derive the following consequence.

Corollary D. The SRB entropy of Viana maps varies continuously with f ∈ V.

Let us remark that V is an open set in the space of C3 transformations from the cylinder
S1 × I into itself, where each f ∈ V has a curve of critical points. The conclusion on the
continuity of the SRB entropy in this higher dimensional case is completely different from
the above mentioned case of one-dimensional quadratic maps.

3. Statistical stability

Let U be a family os maps as in Theorem ??. The main goal of this section is to prove
that µF varies continuously with f ∈ N . In the next lemma we give in particular a proof
that an absolutely continuous invariant measure for a piecewise expanding Markov map
exists. For the sake of notational simplicity we shall write

Jf (x) = | detDf(x)| and JF (x) = | detDF (x)|.

Proposition 3.1. There is C0 > 0 such that for each f ∈ U there exists an F -invariant
absolutely continuous probability measure µF = ρFm with C−1

0 ≤ ρF ≤ C0.

Proof. We start the proof of the result with the following claim: there exists K0 > 0 such
that given f ∈ U , k ≥ 1, an inverse branch G : ∆ → G(∆) of F−k, and measurable sets
A,B ⊂ ∆, then

K−1
0

m(A)

m(B)
≤ m(G(A))

m(G(B))
≤ K0

m(A)

m(B)
. (3.1)

Indeed, observe that

m(A)

m(B)
=

∫
G(A)

JF kdm∫
G(B)

JF kdm

We use (i3) and show that there is K1 > 0 (uniformly choosen in U) such that

K−1
1 ≤ JF k(y)

JF k(z)
≤ K1 (3.2)
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for every y, z on the image of G. For this purpose observe that

log
JF k(y)

JF k(z)
=

k−1∑
i=0

log
JF (F i(y))

JF (F i(z))

≤
k−1∑
i=0

∣∣∣∣JF (F i(y))

JF (F i(z))
− 1

∣∣∣∣
≤ K

k∑
i=1

dist(F i(y), F i(z))

≤ K
∞∑
i=1

κiL,

where L is the diameter of M. Observe that the last upper bound is uniform in U .
Now we use (??) to prove (??). Fixing z ∈ G(∆), it comes out that∫

G(A)
JF kdm∫

G(B)
JF kdm

≤ K2
1

JF k(z)m(G(A))

JF k(z)m(G(B))
,

and with the same argument we prove the other inequality of (??) with K2
1 = K0.

Using the claim we will see that every accumulation point µF of the sequence

µn =
1

n

n−1∑
i=0

F i
∗m

is an F -invariant probability absolutely continuous with respect to m, with density ρF

bounded from zero and from infinity. In order to prove it, take B = ∆ and fix C0 =
K0m(∆)−1. Since m(F−k(A)) is the sum of the terms m(G(A)) over all inverse branches
G : ∆ → G(∆) of F k, it follows from (??) that

C−1
0 m(A) ≤ m(F−k(A)) ≤ C0m(A).

This implies that, for every n, the density ρn = dµn/dm satisfies C−1
0 ≤ ρn ≤ C0, and the

same holds for the density of the accumulation point µF . �

Lemma 3.2. Given ε > 0, there are N ≥ 1 and δ = δ(ε,N) > 0 such that for f ∈ U
‖f − f0‖Ck < δ ⇒ m{τf > N} < ε.

Proof. For the sake of notational simplicity we denote τf by τ and τf0 by τ0. Take any
ε > 0 and take N ≥ 1 in such a way that ‖1{τ0>N}‖1 < ε/2, where 1A denotes the indicator
of a set A. We have

m{τ > N} =
∥∥1{τ>N}

∥∥
1

=
∥∥1{τ>N} − 1{τ0>N} + 1{τ0>N}

∥∥
1

≤
∥∥1{τ>N} − 1{τ0>N}‖1 + ‖1{τ0>N}

∥∥
1
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and so, if we take δ > 0 sufficiently small then, by (u1), taking ‖f − f0‖Ck < δ, the first
term in the sum above can also be made smaller than ε/2. �

Proposition 3.3. The measure µF varies continuously (in the L1-norm) with f ∈ U .

Proof. Let fn be any sequence in U converging to f0 in the Ck topology. For each n ≥ 0,
consider Fn : ∆ → ∆ the induced Markov map associated to fn. Denote by ρn the density of
the Fn-invariant absolutely continuous probability measure. Proposition ?? gives that the
sequence of densities ρn is relatively compact in L∞(∆,m), and so it has some accumulation
point ρ∞ with ‖ρ∞‖∞ ≤ C0. With no loss of generality we assume that the full sequence
ρn converges to ρ∞ in the L1-norm. We need to prove that ρ∞ = ρ0. We will do this by
showing that ∫

(ϕ ◦ F0)ρ∞dm =

∫
ϕρ∞dm

for every continuous ϕ : ∆ → R, and use the fact that F0 has a unique absolutely continuous
invariant probability measure. Given any ϕ : M → R continuous we have∫

ϕρndm→
∫
ϕρ∞dm when n→∞.

On the other hand, since ρn is the density of an Fn-invariant probability measure we have∫
ϕρndm =

∫
(ϕ ◦ Fn)ρndm for every n ≥ 0.

So, it suffices to prove that∫
(ϕ ◦ Fn)ρndm→

∫
(ϕ ◦ F0)ρ∞dm when n→∞. (3.3)

We have∣∣ ∫ (ϕ ◦ Fn)ρndm−
∫

(ϕ ◦ F0)ρ∞dm| ≤∣∣ ∫ (ϕ ◦ Fn)ρndm−
∫

(ϕ ◦ F0)ρndm
∣∣+ ∣∣ ∫ (ϕ ◦ F0)ρndm−

∫
(ϕ ◦ F0)ρ∞dm

∣∣.
Since ρn converges to ρ∞ in the L1-norm and ϕ ◦ F0 is bounded in ∆, we easily deduce
that the second term in the sum above is close to zero for large n.

The only thing we are left to prove is that the first term in the sum above converges to
0 when n tends to ∞. That term is equal to∣∣ ∫ (ϕ ◦ Fn − ϕ ◦ F0)ρndm

∣∣.
Since (ρn)n is bounded in the L∞ norm by Proposition ??, all we are left to show is∫ ∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm→ 0, when n→∞. (3.4)
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Take any ε > 0. For each n ≥ 0 let τn denote the return time function of fn. By Lemma ??
there are N ≥ 1 and n1 ∈ N such that

n ≥ n1 ⇒ m({τn > N}) < ε.

We write the integral in (??) as∫
{τn>N}

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm+

∫
{τn≤N}

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm. (3.5)

The first integral in (??) is bounded by 2ε‖ϕ‖∞ for n ≥ n1. Let us now estimate the
second integral in (??). Define

An =
{
x ∈ ∆: τn(x) = τ0(x)

}
.

Since τn takes only integer values, we have by (u1) that there is some n2 ∈ N such that

m(∆ \ An) ≤ ε, for each n ≥ n2.

Observe that for each x ∈ An we have Fn(x) = f
τ0(x)
n (x). Thus we may write∫

{τn≤N}

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm ≤
∫
{τ0≤N}

∣∣ϕ ◦ f τ0
n − ϕ ◦ f τ0

0

∣∣dm+

∫
∆\An

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm.
Since fn → f0 in the Ck topology, there is n3 ∈ N such that for n ≥ n3∫

{τ0≤N}

∣∣ϕ ◦ f τ0
n − ϕ ◦ f τ0

0

∣∣dm ≤ εm({τ0 ≤ N}).

On the other hand, for n ≥ n2∫
∆\An

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm ≤ 2ε‖ϕ‖∞.

Thus we have for n ≥ max{n1, n2, n3}∫ ∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣dm ≤ ε
(
4‖ϕ‖∞ +m({τ0 ≤ N})

)
.

This proves (??) since ε > 0 has been taken arbitrarily. �

4. Entropy formulas

In this section we prove Theorem ??. Let F : ∆ → ∆ be a piecewise expanding Markov
map and µF its absolutely continuous invariant probability measure. Since the Lypunov
exponents of the induced map F (with respect to the measure µF ) are all positive, then
the next lemma shows, in particular, that the Lyapunov exponents of f (with respect to
the measure µf ) are all positive.

Lemma 4.1. If λ is a Lyapunov exponent of F , then λ/τ̄ is a Lyapunov exponent of f ,
where τ̄ =

∫
∆
τfdµF .
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Proof. Let n be a positive integer. We have for each x ∈ ∆

F n(x) = fSn(x)(x), where Sn(x) =
n−1∑
i=0

τf (F
i(x)).

As Sn(x) = Sn(y) for Lebesgue almost every x ∈ ∆ and y near enough x, we can take
derivatives in the above equation and conclude that if v ∈ TxM then

1

Sn(x)
log ‖DfSn(x)(x)v‖ =

n

nSn(x)
log ‖DF n(x)v‖. (4.1)

Since µF is an ergodic measure, we have by Birkhoff’s ergodic theorem

lim
n→∞

Sn(x)

n
=

∫
∆

τfdµF = τ̄ (4.2)

for Lebesgue almost every x ∈ ∆ (recall that µF is equivalent to Lebesgue measure).
Attending to (??) and (??) the proof follows. �

Proposition 4.2. The entropy formula holds for µf , i.e. hµf
(f) =

∫
M

log Jf dµf .

Proof. As a consequence of Lemma ??, the fact that the Lyapunov exponents of F with
respect to µF are all positive implies that all Lyapunov exponents of f with respect to µf

are also positive. By the entropy formula

hµf
=

∫
M

d∑
i=1

λidµf .

Now the integrability of log Jf with respect to µf allows us to use Oseledets Theorem and
rewrite the above equality as required in the above proposition. �

The proof of the next proposition uses fairly standard methods in ergodic theory.

Proposition 4.3. If F : ∆ → ∆ is a piecewise expanding map for which (i1), (i2) and (i3)
hold, then

hµF
(F ) =

∫
∆

log JF dµF .

Proof. First we observe that the measure µF is ergodic. We shall apply Shannon-McMillan-
Breiman theorem for the generating partition P consisting of the smoothness domains of
F . Take a generic point x ∈ ∆. We have

hµF
(F ) = hµF

(F,P) = lim
n→∞

−1

n
log µF (Pn(x)) = lim

n→∞

−1

n
logm(Pn(x)). (4.3)

The last equality comes from the fact thatm and µF are equivalent measures with uniformly
bounded densities. Now observe that each Pn(x) is equal to some G(∆), where G is an
inverse branch of F n. Hence we have

m(∆) =

∫
G(∆)

JF ndm. (4.4)



ON THE CONTINUITY OF THE SRB ENTROPY 13

By the distortion estimate obtained in the proof of the Proposition ?? we conclude that

K−1
1 ≤ m(G(∆))JF n(x) ≤ K1.

By the above inequality we deduce that

lim
n→∞

−1

n
logm(Pn(x)) = lim

n→∞

1

n
log JF n(x) = lim

n→∞

1

n

n−1∑
i=0

log JF (F i(x)) =

∫
log JFdµF ,

where the last equality holds by Birkhoff ergodic theorem. �

Now we give a lemma with the aid of which we shall prove Theorem ??.

Lemma 4.4. If F is an induced piecewise expanding Markovian map for f , then∫
∆

log JF dµF =

∫
M

log Jf dµ
∗
f .

Proof. We define for each n ≥ 1

Pn = {ω ∈ P : τ(ω) = n}.

Observe that for each x ∈ Pn we have F = fn. So, by the chain rule,

JF (x) = Jf (f
n−1(x)) · · · Jf (f(x)) · Jf (x).

Thus we have for each n ≥ 1∫
Pn

log JFdµF =

=

∫
Pn

log Jf ◦ fn−1dµF + · · ·+
∫

Pn

log Jf ◦ fdµF +

∫
Pn

log JfdµF

=

∫
M

log Jf d
(
fn−1
∗ (µF |Pn)

)
+ · · ·+

∫
M

log Jf d (f∗(µF |Pn)) +

∫
M

log Jf d(µF |Pn).

Using this we deduce∫
∆

log JFdµF =
∞∑

n=1

∫
Pn

log JF dµF

=
∞∑

n=1

n−1∑
j=0

∫
M

log Jf d
(
f j
∗ (µF |Pn)

)
=

∞∑
n=0

∫
M

log Jf d (fn
∗ (µF |{τ > n}))

=

∫
M

log Jf d

(
∞∑

n=0

fn
∗ (µF |{τ > n})

)
.
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By (??) we have ∫
M

log Jf d

(
∞∑

n=0

fn
∗ (µF |{τ > n})

)
=

∫
M

log Jfdµ
∗
f ,

and so we have proved the result. �

Since the entropy formula holds for µf by Proposition ??, then using Proposition ?? and
Lemma ?? we obtain

hµf
(f) =

∫
M

log Jf dµf

=
1

µ∗f (M)

∫
M

log Jf dµ
∗
f

=
1

µ∗f (M)

∫
∆

log JF dµF (4.5)

=
1

µ∗f (M)
hµF

(F ).

This proves Theorem ??.

5. Continuity of entropy

In this section we prove Theorem ??. Let U be a family of Ck maps, k ≥ 2, from the
manifold M into itself for which (u1) and (u2) hold. We are implicitly assuming that we
have some ∆ ⊂ M and, associated to each f ∈ U , a piecewise expanding Markov induced
map F : ∆ → ∆. By (??), in order to prove Theorem ??, we just have to show that both
µ∗f (M) and

∫
∆

log JF dµF vary continuously with f ∈ U .

Take an arbitrary f0 ∈ U and let fn be any sequence in U converging to f0 in the Ck

topology. For each n ≥ 0, let Fn : ∆ → ∆ be the induced map associated to fn, and
let τn : ∆ → N be the respective return time function. Denote by ρn the density of the
absolutely continuous Fn-invariant probability measure µFn . Consider also for n ≥ 0 the
absolutely continuous fn-invariant measure µ∗n obtained as in (??) from µFn :

µ∗n =
∞∑

j=0

f j
∗ (µFn | {τf > j}) .

The continuous variation of µ∗f (M) and
∫

∆
log JF dµF with f ∈ U will follow from Propo-

sition ?? and Proposition ?? below. We start with an abstract lemma.

Lemma 5.1. Let (ϕn)n be a bounded sequence in L∞(m). If ϕn → ϕ in the L1(m) norm
and ψ ∈ L1(m), then ∫

ψ(ϕn − ϕ)dm→ 0, when n→∞.
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Proof. Take any ε > 0. Let C > 0 be an upper bound for ‖ϕn‖∞. Since ψ ∈ L1(m), there
is δ > 0 such that for any Borel set B ⊂M

m(B) < δ ⇒
∫

B

|ψ|dm <
ε

4C
. (5.1)

Define for each n ≥ 1

Bn =

{
x ∈ ∆: |ϕn(x)− ϕ0(x)| >

ε

2‖ψ‖1

}
.

Since ‖ϕn − ϕ0‖1 → 0 when n → ∞, then there is n0 ∈ N such that m(Bn) < δ for every
n ≥ n0. Taking into account the definition of Bn, we may write∫

|ψ||ϕn − ϕ0|dm =

∫
Bn

|ψ||ϕn − ϕ0|dm+

∫
∆\Bn

|ψ||ϕn − ϕ0|dm

≤ 2C

∫
Bn

|ψ|dm+
ε

2‖ψ‖1

∫
∆\Bn

|ψ|dm.

Then, using (??), this last sum is upper bounded by ε, as long as n ≥ n0. �

Proposition 5.2. µ∗n(M) converges to µ∗0(M) when n→∞.

Proof. Recall that we have for every n ≥ 0

µ∗n(M) =
∞∑

j=0

µFn ({τn > j}) =

∫
τndµFn .

Hence

|µ∗n(M)− µ∗0(M)| ≤
∫
|τnρn − τ0ρ0|dm.

Now we write ∫
|τnρn − τ0ρ0|dm ≤

∫
|τ0||ρn − ρ0|dm+

∫
|τn − τ0||ρn|dm. (5.2)

Let us first control the first term on the right hand side of (??). If we take ψ = τ0 and
ϕn = ρn for each n ≥ 0, then, by Proposition ?? and Proposition ??, these functions are in
the conditions of Lemma ??. Hence, the first term on the right hand side of (??) converges
to 0 when n→∞. We just have to notice that∫

|τn − τ0||ρn|dm→ 0, when n→∞. (5.3)

In fact, since (ρn)n is uniformly bounded by Proposition ??, then hypothesis (u1) assures
that (??) holds. �

At this point we have proved the continuous variation of µf (M) with f ∈ U , thus
attaining the first step in the proof of Theorem ??. The next step is to prove the continuous
variation of

∫
∆

log JF dµF with f ∈ U . We start with an auxiliary lemma.

Lemma 5.3. There is C > 0 such that log JFn ≤ Cτn for every n ≥ 0.
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Proof. Define Kn = maxx∈M{Jfn(x)}, for each n ≥ 0. By the compactness of M and the
continuity on the first order derivative, there is K > 1 such that Kn ≤ K for all n ≥ 0.
We have

JFn(x) =

τn(x)−1∏
j=0

Jfn(f j
n(x)) ≤ Kτn(x).

Hence
0 < log JFn(x) ≤ τn(x) logK.

We just have to take C = eK . �

The previous result gives in particular the integrability of log Jf with respect to Lebesgue
measure, under the assumption of the integrability of τf . In the proof of the next propo-
sition we also obtain the continuous variation of log Jf in the L1(m) norm with f ∈ U , as
explicitly stated in (??) below.

Proposition 5.4.

∫
log JFn dµFn converges to

∫
log JF0 dµF0, when n→∞.

Proof. First we write∣∣ ∫ log JF0dµF0 −
∫

log JFndµFn

∣∣ ≤∣∣ ∫ (log JFn − log JF0)ρndm
∣∣+ ∣∣ ∫ (ρn − ρ0) log JF0dm

∣∣.
It follows from Proposition ??, Proposition ?? and Lemma ?? that if we take ϕn = ρn and
ψ = log JF0 then these functions are in the conditions of Lemma ??. Thus, it is enough to
show that ∫ ∣∣ log JFn − log JF0

∣∣dm→ 0, when n→∞. (5.4)

Take any ε > 0. Since τ0 ∈ L1(m), there is N ≥ 1 such that∫
{τ0>N}

τ0dm < ε. (5.5)

We then write∫
| log JFn − log JF0 |dm = (5.6)∫

{τn>N}
| log JFn − log JF0|dm+

∫
{τn≤N}

| log JFn − log JF0|dm. (5.7)

Let us start by controlling the first in this last sum. Using Lemma ?? we obtain∫
{τn>N}

| log JFn − log JF0|dm ≤
∫
{τn>N}

τndm+

∫
{τn>N}

τ0dm. (5.8)

One has

1{τn>N}τn ≤ 1{τ0>N}τ0 + |1{τn>N} − 1{τ0>N}|τ0 + 1{τn>N}|τn − τ0|. (5.9)
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Choosing n sufficiently large, we have∫
1{τn>N}|τn − τ0|dm ≤

∫
|τn − τ0|dm < ε. (5.10)

On the other hand, applying Lemma ?? to ϕn = 1{τn>N}, for n ≥ 0, and ψ = τ0 we also
have for large n ∫

|1{τn>N} − 1{τ0>N}| τ0dm < ε. (5.11)

It follows from (??), (??), (??) and (??) that for large n∫
{τn>N}

τndm < 3ε. (5.12)

Also from (??) and (??)∫
{τn>N}

τ0dm ≤
∫
|1{τn>N} − 1{τ0>N}| τ0dm+

∫
{τ0>N}

τ0dm < 2ε. (5.13)

Hence, from (??), (??) and (??) we deduce that for large n∫
{τn>N}

| log JFn − log JF |dm < 5ε. (5.14)

Let us now estimate the second term in (??). Letting C > 0 be the constant given by
Lemma ??, take δ > 0 such that∫

B

C(N + τ0)dm < ε, whenever m(B) < δ. (5.15)

For each n ∈ N define
An =

{
x ∈ ∆: τn(x) = τ0(x)

}
.

Since τn takes only integer values, we have by (u1)

m(∆ \ An) ≤ δ, for large n. (5.16)

Observe that for each x ∈ An we have Fn(x) = f
τ0(x)
n (x). Thus we may write∫

{τn≤N}
| log JFn − log JF0|dm ≤∫

An∩{τn≤N}
| log Jf

τ0
n
− log Jf

τ0
0
|dm+

∫
{τn≤N}\An

| log JFn − log JF0 |dm.

Note that by (i2) we have Jf
τ0
n
≥ 1 for every n ≥ 0. Hence, the first integral in the last

sum can be made arbitrarily small if we take n sufficiently large. On the other hand, we
have by Lemma ??∫

{τn≤N}\An

| log JFn − log JF0|dm ≤
∫

∆\An

C(N + τ0)dm

It follows from (??) and (??) that this last quantity can be made smaller than ε > 0, as
long as n is take sufficiently large. �
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(2000), 13-56.
[B1] R. Bowen, Markov partitions for Axiom diffeomorphisms, Amer. J. Math. 92 (1970), 725-747
[B2] , Equilibrium states and the ergodic theory of Axiom A diffeomorphisms, Lecture Notes in

Mathematics, 480 (1975), Springer.
[BR] R. Bowen, D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202.
[BST] J. Buzzi, O. Sester, M. Tsujii, Weakly expanding skew-products of quadratic maps, preprint 2001.
[C] G. Contreras, Regularity of topological and metric entropy of hyperbolic flows, Math. Z. 210 (1992),

no. 1, 97–111.
[J] M. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-

dimensional maps, Comm. Math. Phys. 81 (1981), 39-88.
[L] P.-D. Liu, Pesin’s entropy formula for endomorphisms, Nagoya Math. J. 150 (1998), 197-209.
[LY] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic maps,

Trans. Amer. Math. Soc. 186 (1973), 481-488.
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