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Abstract. We establish local and global results for the initial value problem associated to
the Schrödinger-Debye system for data in low regularity spaces. The main tool used is an
optimal application of the Strichartz estimates for the linear Schrödinger operator. In the
one dimensional case we also use Kato’s smoothing effect to obtain global results in fractional
Sobolev spaces.

1. Introduction

We study the Initial Value Problem (IVP) for the Schrödinger-Debye system

(1.1)


i∂tu + 1

2∆u = uv, t ≥ 0, x ∈ Rn,

τ∂tv + v = ε|u|2,
u(x, 0) = u0(x), v(x, 0) = v0(x),

where u = u(x, t) is a complex-valued function, v = v(x, t) is a real-valued function, τ > 0,
ε = ±1 and ∆ is the Laplacian operator in dimension n.

This system is derived from the Maxwell-Debye equations{
i∂tA + c

2kη0
∆A = w0

η0
νA,

τ∂tν + ν = η2|A|2,

via the rescaling

u(x, t) =
√

w0|η2|
η0

A
(√

c
kη0

x, t
)

,

v(x, t) = w0
η0

ν
(√

c
kη0

x, t
)

.

The Maxwell-Debye system describes the non resonant delayed interaction of an electromagnetic
wave with a media. In these equations A denotes the envelope of a light wave that goes through
a media which response is non resonant. This wave induces a change ν of refractive index in
the material (initially η0 for an electromagnetic wave of frequency w0) with a slight delay τ .
The magnitude and the sign of the nonlinear coupling of the matter with the wave is described
by the parameter η2. The light velocity in the vacuum is denoted by c and k denotes the wave
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vector of the incident electromagnetic wave. See Newell and Moloney [13] for a more complete
discussion of this model.

We can simplify the system (1.1) by writing explicitly the solution of

(1.2) v(t) = e−t/τv0(x) + ε
τ

t∫
0

e−(t−t′)/τ |u(t′)|2 dt′

to obtain the decoupled integro-differential equation

(1.3)

i∂tu + 1
2∆u = e−t/τuv0(x) + ε

τ u
t∫
0

e−(t−t′)/τ |u(t′)|2dt′, x ∈ Rn, t ≥ 0,

u(x, 0) = u0(x).

where τ > 0 and ε = ±1.
Using the integral formulation of this equation we have

(1.4) u(t) = S(t)u0 − i

t∫
0

S(t− t′)
(
F0(u(t′)) + F1(u(t′))

)
dt′,

where

(1.5) S(t)u0 = e
it
2 ∆u0 = (e

it
2 |ξ|

2

û0)∨

is the unitary group associated to the linear Schrödinger equation and

(1.6) F0(u(t)) = e−t/τuv0(x), F1(u(t)) = ε
τ u

∫ t

0
e−(t−t′)/τ |u(t′)|2dt′.

Previous results concerning well-posedness for the IVP (1.1) were obtained by Bidégaray in
[2, 3]. We summarize them as follows:

(a1) local well-posedness in L2(Rn), for data (u0, v0) ∈ L2(Rn)× L∞(Rn),
(a2) local well-posedness in H1(Rn), for data (u0, v0) ∈ H1(Rn)×H1(Rn),

which are valid in dimensions n = 1, 2, 3. Here Hs(R) denotes the standard L2-based Sobolev
space of order s.

We note that in these results the persistence property of the solutions was not obtained.
To prove these results the author used Strichartz estimates and a fixed point argument.
In [2] it was also shown that as τ tends to zero, solutions to the system (1.1) converge (in Hr

with r > 2 + n/2) to those of the cubic nonlinear Schrödinger equation (NLS), namely

(1.7) i∂tu + 1
2∆u = ε|u|2u,

at least on a certain time interval and for compatible initial data v0 = ε|u0|2.
Since local and global well-posedness in Hs(R), s ≥ 0, has been established for the NLS (1.7)

(see [4, 7, 15]), in the one-dimensional, it is expected that the Cauchy problem for the equation
(1.3) will be locally well-posed in Hs(R) for s ≥ 0, for given data v0 in appropriate Sobolev
space Hk(R).

Our goal in this paper is to improve many of the results in [2, 3] and obtain new ones.
Regarding the well-posedness for the IVP (1.1) we will show the following results:
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(b1) local and global well-posedness in L2(Rn)× L2(Rn),
(b2) local and global well-posedness in H1(Rn)×H1(Rn),

in dimensions n = 1, 2, 3. Moreover, for the one-dimensional case, we will also show

(b3) local well-posedness for data in Hs(R)×Hs(R), for 0 < s < 1,
(b4) local and global well-posedness for data in H1/2(R)× L2(R),
(b5) local and global well-posedness for data in Hs(R)×Hk(R) with 1/2 ≤ s ≤ 1 and s−1/2 <

k ≤ s.

To obtain our local results in the case (b1), (b2) and (b3) we will use the so called Lp−Lq or
Strichartz estimates. These type of estimates were first established by Strichartz [14] for solutions
of the linear Schrödinger equation. Generalizations of these estimates have been obtained by
several authors. For instance, Ginibre and Velo [7] and Kenig, Ponce and Vega [10]. In the one
dimension we will also use commutator estimates deduced by Kenig, Ponce and Vega in [12].

We proceed as follows. Instead of working with the system (1.1) we use its equivalent integral
form (1.4). Then we use the Lp−Lq estimates, and the commutator estimates in the one-
dimensional case, to show our results via the contraction mapping principle

Using that the L2-norm for the solution u of the system (1.1) is conserved, i.e,

(1.8)
∫
|u(x, t)|2dx =

∫
|u0(x)|2dx,

we extend the local result in L2(Rn)× L2(Rn), in the case (b1), to any time interval [0, T ]. For
the global result, in the case (b2), we obtain a “priori” estimate in H1(Rn) × H1(Rn) for the
solution using the global result in L2(Rn)× L2(Rn).

To obtain our global results in the cases (b4) and (b5), the main tool used is the smoothing
effect obtained by Kenig, Ponce and Vega [11, 12], that is,

(1.9) ‖D1/2
x S(t)u0‖L∞x L2

T
≤ C ‖u0‖L2

x
.

We use (1.9) to prove our local results in these cases. Using that the solutions obtained satisfy the
integral equation (1.4) combined with the conservation law (1.8) we obtain a “priori” estimates
for the local solutions, which are used to extend these to any time interval [0, T ].

Remark 1.1. The method of proof used in [2, 3] does not yield the persistence of v(t) in H1 in
the case (a2) for n = 2, 3 or v(t) in L∞ in the case (a1). Similarly, as in [2, 3], we perform a
fixed-point procedure only on u to prove our results, but unlike these references we guarantee the
persistence of the solution v(t) in the same space where we take the initial data v0.

This paper is organized as follows. The statements of the main results will be given in Section
2. In Section 3 we prepare some preliminary results useful in the proofs of the main results.
Section 4 will be devoted to establish local and global wellposedness for data in L2 × L2. The
global well posedness result for data in fractional Sobolev spaces in the one dimensional case
will be proved in Section 5. Finally, in Section 6 we show the global result for data in H1×H1.
Before leaving this section we introduce some notation.

In this work we use the following notations:
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• The Fourier transform of f will be denoted by

f̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξf(x) dx

• The Riesz potential of order −s is denoted by

Ds
xf = cs (|ξ|s f̂(ξ))∨,

• The Lp − Lq norms are denoted as

‖f‖Lp
T Lq

x
=
(∫ T

0
‖f(·, t)‖p

Lqdt

)1/p

and

‖f‖Lp
xLq

T
=

(∫
Rn

(∫ T

0
|f(·, t)|q dt

)p/q

dx

)1/p

.

Acknowledgment The authors would like to thank Luis Vega for fruitful conversions and
the organizers of PASI for the financial support that allowed their participation in this event.
Part of this research was carried while F. L. was visiting the Department of Mathematics of UC
Santa Barbara.

2. Main Results

In this section we present the statement of the main results in this paper. We need the
following definition.

Definition 2.1. Let n ∈ N. The pair (r, q) is an admissible pair if satisfies

(2.1)
2
r

= n

(
1
2
− 1

q

)
with

(2.2)


2 ≤ q ≤ ∞ if n = 1,

2 ≤ q < ∞ if n = 2,

2 ≤ q < 2n
n−2 if n ≥ 3.

Theorem 2.1. Let n = 1, 2, 3. Given u0, v0 ∈ L2(Rn) there exist T = T (τ, ‖u0‖L2 , ‖v0‖L2)
positive and a unique solution u of the IVP (1.3) satisfying

(2.3) u ∈ C
(
[0, T ] : L2(Rn)

)
and

(2.4) ‖u‖Lr
T Lq

x
< ∞, for any admissible pair (r, q).

Moreover, the map (u0, v0) 7−→ u(t) from L2(Rn) × L2(Rn) into the class defined by (2.3)–
(2.4) is locally Lipschitz. In addition, from (2.3)–(2.4) one has that

(2.5) v ∈ C
(
[0, T ] : L2(Rn)

)
.

Furthermore, the above solution can be extended to any time interval [0, T ].
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Theorem 2.2. Let n = 1, 2, 3. Given u0, v0 ∈ H1(Rn) there exist T = T (τ, ‖u0‖H1 , ‖v0‖H1)
positive and a unique solution u of the IVP (1.3) satisfying

(2.6) u ∈ C
(
[0, T ] : H1(Rn)

)
and

(2.7) ‖u‖Lr
T Lq

x
+ ‖∇u‖Lr

T Lq
x

< ∞, for any admissible pair (r, q).

Moreover, the map (u0, v0) 7−→ u(t) from H1(Rn) ×H1(Rn) into the class defined by (2.6)–
(2.7) is locally Lipschitz.

From (2.6)–(2.7) we also have that

(2.8) v ∈ C
(
[0, T ] : H1(Rn)

)
,

Furthermore, the above solution can be extended to any time interval [0, T ].

Now we let s ∈ (0, 1). Then we obtain the following results concerning well-posedness for the
one-dimensional case in Hs(R)×Hs(R).

Theorem 2.3. Let 0 < s < 1. Then for any (u0, v0) ∈ Hs(R) × Hs(R) there exist T =
T (τ, ‖u0‖s, ‖v0‖s) > 0 and a unique solution u of the IVP (1.3) such that for q ∈ [2,∞]

(2.9) u ∈ C
(
[0, T ] : Hs(R)

)
and

(2.10) ‖u‖Lr
T Lq

x
< ∞, with 2/r = 1/2− 1/q.

Moreover, the map (u0, v0) 7−→ u(t) from Hs(R) ×Hs(R) into (2.9)–(2.10) is locally Lips-
chitz.

From (2.9)–(2.10) one has that

(2.11) v ∈ C
(
[0, T ] : Hs(R)

)
,

In the particular case, when 1/2 ≤ s ≤ 1, we can extend the local results in Theorem 2.3 for
data v0 less regular. We also show that the solutions obtained in this case are global. More
precisely, if we define

(2.12) Is =

{
[0, 1/2] if s = 1/2,

(s− 1/2, s] if s ∈ (1/2, 1],

we have the following results

Theorem 2.4. Let s ∈ [1/2, 1]. Then for any (u0, v0) ∈ Hs(R)×Hk(R) with k ∈ Is there exist
T = T (τ, ‖u0‖s, ‖v0‖k) > 0 and a unique solution u of the IVP (1.3) such that for q ∈ [2,∞]

(2.13) u ∈ C
(
[0, T ] : Hs(R)

)
and

(2.14) ‖u‖Lr
T Lq

x
+ ‖∂xu‖L∞x L2

T
< ∞, with 2/r = 1/2− 1/q.

Moreover, the map (u0, v0) 7−→ u(t) from Hs(R)×Hk(R) into (2.13)–(2.14) is locally Lipschitz
and

(2.15) v ∈ C
(
[0, T ] : Hk(R)

)
.
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Corollary 2.1. The solutions given by Theorem 2.4 extend to any time interval [0,T]. Moreover,
when s = 1/2 and 0 ≤ k ≤ 1/2 there are positive constants C, β, and γ such that

‖u‖
L∞T H

1/2
x

≤ C βγT ,

‖v‖L∞T Hk
x
≤ ‖v0‖Hk + C

τ T 3/4βγT .

(2.16)

3. Preliminary Estimates

In this section we collect known results on smoothing effect estimates of free Schrödinger
evolution group.

First we consider the (IVP) associated to the linear Schrödinger equation

(3.1)

{
i∂tu + 1

2∆u = 0, x ∈ Rn, t ≥ 0,

u(x, 0) = u0(x),

whose solution is given by u(x, t) = S(t)u0(x) and S(t) defined in (1.5).
We use the following well-known Strichartz estimates.

Proposition 3.1. If (r1, q1) and (r2, q2) are admissible, then we have the following estimates

(3.2) ‖S(t)u0‖L
r1
T L

q1
x
≤ C‖u0‖L2 ,

(3.3) ‖
∫ t

0
S(t− t′)G(·, t′)dt′‖L

r1
T L

q1
x
≤ C‖G‖

L
r′2
T L

q′2
x

and

(3.4) ‖
∫ t

0
S(t− t′)G(·, t′)dt′‖L

r1
T L

q1
x
≤ CT (1/r′2−1/2)‖G‖

L
q′2
x L2

T

, for n = 1, 2,

where 1
r2

+ 1
r′2

= 1 and 1
q2

+ 1
q′2

= 1.

Remark 3.1. The estimates (3.2) and (3.3) hold for all dimensions (n). The last estimate
(3.4) is a slight modification of the (3.3) in the cases n = 1, 2.

Proof. See Ginibre-Velo [8] for the proof of the first estimate (3.2). For the proof of (3.3) we
can see Ginibre-Velo [8], K. Yajima [16], Cazenave-Weissler [4] and Kato [9]. The last estimate
(3.4) is an immediate consequence of the (3.3). Indeed, we note that{

q2 ∈ [2,∞] =⇒ r2 ≥ 4/n =⇒ r′2 ≤ 4/(4− n) ≤ 2, (n = 1, 2),
q2 ≥ 2 =⇒ 2 ≥ q′2.

Then, using Hölder’s and Minkowski’s inequalities we have

‖G‖
L

r′2
T L

q′2
x

≤ T (1/r′2−1/2)‖G‖
L2

T L
q′2
x

≤ T (1/r′2−1/2)‖G‖
L

q′2
x L2

T

,

and hence, (3.4) follows from (3.3). �

In the one dimensional case the main tool to obtain global results is the smoothing effect of
Kato type for solutions of the linear Schrödinger equation. More precisely,
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Proposition 3.2.

sup
x∈R

( ∞∫
−∞

|D1/2
x S(t)u0(x)|2dt

)1/2
≤ C‖u0‖L2 ,(3.5)

‖D1/2
x

∫ t

0
S(t− t′)G(x, t′) dt′‖L2

x
≤ C ‖G‖L1

xL2
t

(3.6)

and

(3.7) sup
x∈R

( +∞∫
−∞

∣∣∣∂x

∫ t

0
S(t− t′)G(x, t′) dt′

∣∣∣2 dt
)1/2

≤ C ‖G‖L1
xL2

t
.

These estimates were established by Kenig, Ponce and Vega [10, 11].

Proposition 3.3. For any θ ∈ [0, 1], we have

(3.8) ‖Dθ/2
x

∫ t

0
S(t− t′)G(·, t′)dt′‖L∞T L2

x
≤ C T (1−θ)/2‖G‖

L
2/(1+θ)
x L2

T

.

Proof. The estimate (3.8) follows by interpolation (see [1]). �

Next we will prove a series of estimates for the nonlinear terms F0 and F1 defined in (1.6).
Before doing so we will remind some useful results for our purpose.

To handle the nonlinear terms with fractional derivatives, we need the following commutator
estimates deduced by Kenig, Ponce and Vega in [12].

Proposition 3.4. Let α ∈ (0, 1), α1, α2 ∈ (0, α), α1 + α2 = α and p, p1, p2, q, q1, q2 ∈ (1,∞)
with 1

p1
+ 1

p2
= 1

p and 1
q1

+ 1
q2

= 1
q . Then we have

(3.9) ‖Dα
x (fg)− fDα

xg − gDα
xf‖Lp

xLq
T
≤ C‖Dα1

x f‖L
p1
x L

q1
T
‖Dα2

x g‖L
p2
x L

q2
T

.

Moreover, (3.9) also holds when q = 1 and when (p, q) = (1, 2).

(3.10) ‖Dα
x (fg)− fDα

xg − gDα
xf‖Lp

xL2
T
≤ C‖f‖L

p1
x L∞T

‖Dα
xg‖L

p2
x L2

T
.

(3.11) ‖Dα
x (fg)− fDα

xg − gDα
xf‖Lp

x
≤ C‖f‖L∞x ‖D

α
xg‖Lp

x
.

Proof. See Appendix in [12]. �

Finally we prove the following proposition which will be useful in the proof of Theorems 2.3
and 2.4.

Proposition 3.5. Let F1(u) define as in (1.6), i.e,

F1(u(t)) = ε
τ u

∫ t

0
e−(t−t′)/τ |u(t′)|2dt′.

The following statements hold
(i) For s ∈ (0, 1) we have

‖Ds
xF1(u)‖L1

T L2
x
≤ C

τ T 3/2‖u‖2
L4

T L∞x
‖u‖L∞T Hs

x
.(3.12)



8 A. J. CORCHO AND F. LINARES

(ii) For s ∈ [1/2, 1] we have

‖Ds−1/2
x F1(u)‖L1

xL2
T
≤ C

τ

(
T 5/4 + T 3/2

)
‖u‖2

L∞T H
s−1/2
x

(
‖u‖L∞T Hs

x
+ ‖u‖L4

T L∞x

)
.(3.13)

Proof. For the case (i) the norm ‖Ds
xF1(u)‖L1

T L2
x

can be divided into three terms:

‖Ds
xF1(u)‖L1

T L2
x
≤ 1

τ (A11 + A12 + A13)

where

A11 =
∥∥Ds

x

(
u

∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

)
−u

∫ t

0
e−(t−t′)/τDs

x(|u(t′)|2)dt′

−
(
Ds

xu
)∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

∥∥
L1

T L2
x
,

A12 =
∥∥u ∫ t

0
e−(t−t′)/τDs

x(|u(t′)|2)dt′
∥∥

L1
T L2

x
,

A13 =
∥∥(Ds

xu
)∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

∥∥
L1

T L2
x
.

For the first term we apply Proposition 3.4-(3.11) and Hölder’s inequality in the time variable
to get

A11 ≤ C‖u‖L4
T L∞x

‖
∫ t

0
e−(t−t′)/τDs

x(|u(t′)|2)dt′‖
L

4/3
T L2

x

≤ CT 3/4‖u‖L4
T L∞x

‖
∫ t

0
e−(t−t′)/τDs

x(|u(t′)|2)dt′‖L∞T L2
x

≤ CT 3/4‖u‖L4
T L∞x

‖Ds
x(|u|2)‖L1

T L2
x

≤ CT 3/4‖u‖L4
T L∞x

‖u‖L4
T L∞x

‖Ds
xu‖

L
4/3
T L2

x

≤ CT 3/2‖u‖2
L4

T L∞x
‖u‖L∞T Hs

x
.

A similar argument shows that

A12 ≤ CT 3/2‖u‖2
L4

T L∞x
‖u‖L∞T Hs

x
.

For the last term using Hölder’s inequality we obtain

A13 ≤ C‖Ds
xu‖L1

T L2
x
‖
∫ t

0
e−(t−t′)/τ |u(t′)|2dt′‖L∞T L∞x

≤ CT‖u‖L∞T Hs
x
‖|u|2‖L1

T L∞x

≤ CT‖u‖L∞T Hs
x
T 1/2‖|u|2‖L2

T L∞x

≤ CT 3/2‖u‖L∞T Hs
x
‖u‖2

L4
T L∞x

.

Then the above estimates for A11, A12 and A13 give the desired estimate (3.12).
Next we show the case (ii). First we consider the particular case s = 1/2 and we get
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‖F1(u)‖L1
xL2

T
≤ C

τ ‖u‖L2
xL2

T

∥∥∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

∥∥
L2

xL∞T

≤ C
τ T 1/2‖u‖L∞T L2

x
‖uu‖L1

T L2
x

≤ C
τ T 1/2‖u‖L∞T L2

x
‖u‖

L
4/3
T L2

x
‖u‖L4

T L∞x

≤ C
τ T 5/4‖u‖2

L∞T L2
x
‖u‖L4

T L∞x
.

Now for 1/2 < s ≤ 1 we have

‖Ds−1/2
x F1(u)‖L1

xL2
T
≤ 1

τ (A21 + A22 + A23)

with

A21 =
∥∥Ds−1/2

x

(
u

∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

)
−u

∫ t

0
e−(t−t′)/τDs−1/2

x (|u(t′)|2)dt′

−
(
Ds−1/2

x u
)∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

∥∥
L1

xL2
T
,

A22 =
∥∥(Ds−1/2

x u
)∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

∥∥
L1

xL2
T
,

A23 =
∥∥u ∫ t

0
e−(t−t′)/τDs−1/2

x (|u(t′)|2)dt′
∥∥

L1
xL2

T
.

Proposition 3.4-(3.9), Minkowski’s, Hölder’s and Sobolev’s inequalities yield

A21 ≤ C
∥∥Ds/2−1/4

x u
∥∥

L
4/(3−2s)
x L

4/(3−2s)
T

∥∥Ds/2−1/4
x

∫ t

0
e−(t−t′)/τ |u(t′)|2dt′

∥∥
L

4/(1+2s)
x L

4/(2s−1)
T

≤ CT (2s−1)/4
∥∥Ds/2−1/4

x u
∥∥

L
4/(3−2s)
T L

4/(3−2s)
x

∥∥∫ t

0
e−(t−t′)/τDs/2−1/4

x (|u(t′)|2)dt′
∥∥

L
4/(1+2s)
x L∞T

≤ CT (2s−1)/4
∥∥Ds/2−1/4

x u
∥∥

L
4/(3−2s)
T L

4/(3−2s)
x

∥∥Ds/2−1/4
x (|u|2)

∥∥
L

4/(1+2s)
x L1

T

≤ CT 1/2
∥∥Ds/2−1/4

x u
∥∥

L∞T L
4/(3−2s)
x

(
2‖u‖L2

xL2
T

∥∥Ds/2−1/4
x u

∥∥
L

4/(2s−1)
x L2

T

+ C
∥∥Ds/4−1/8

x u
∥∥

L
8/(5−2s)
x L2

T

∥∥Ds/4−1/8
x u

∥∥
L

8/(6s−3)
x L2

T

)
≤ CT 1/2

∥∥Ds−1/2
x u

∥∥
L∞T L2

x

(
2‖u‖L2

T L2
x

∥∥D1/2
x u

∥∥
L2

T L2
x
+ C‖Ds/2−1/4

x u
∥∥

L2
T L2

x
‖D3/4−s/2

x u
∥∥

L2
T L2

x

)
≤ CT 3/2‖u‖2

L∞T H
s−1/2
x

‖u‖L∞T L2
x
‖u‖L∞T Hs

x
.

From 1/2 < s ≤ 1 we have 2 ≤ 4/(2s − 1), 2 ≤ 8/(5 − 2s) and 2 ≤ 8/(6s − 3). We have used
this fact to apply Minkowski’s and Sobolev’s inequalities. Next by Hölder’s and Minkowski’s
inequalities it follows that
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A22 ≤
∥∥Ds−1/2

x u
∥∥

L2
xL2

T
‖|u|2‖L2

xL1
T

≤ CT 1/2‖u‖
L∞T H

s−1/2
x

‖u‖
L

4/3
T L2

x
‖u‖L4

T L∞x

≤ CT 5/4‖u‖
L∞T H

s−1/2
x

‖u‖L∞T L2
x
‖u‖L4

T L∞x
.

Finally using Hölder’s and Minkowski’s inequalities and Proposition 3.4-(3.11) we have that

A23 ≤ ‖u‖L2
xL2

T

∥∥Ds−1/2
x (|u|2)

∥∥
L2

xL1
T

≤ T 1/2‖u‖L∞T L2
x

∥∥Ds−1/2
x (|u|2)

∥∥
L1

T L2
x

≤ CT 1/2‖u‖L∞T L2
x
‖u‖L4

T L∞x

∥∥Ds−1/2
x u

∥∥
L

4/3
T L2

x

≤ CT 5/4‖u‖L∞T L2
x
‖u‖

L∞T H
s−1/2
x

‖u‖L4
T L∞x

.

Collecting the estimates for A21, A22 and A23 we obtain the desired estimate (3.13). �

4. Local and Global Theory in L2(Rn)× L2(Rn)

In this section we consider the IVP (1.1) with data u0, v0 ∈ L2(Rn), n = 1, 2, 3. Our purpose
is to prove Theorem 2.1. To do so we define an integral operator and a convenient space where
this integral operator turns out to be a contraction operator. Using the contraction mapping
principle we obtain the desired result.

We begin by defining the operator

(4.1) Φ(u)(t) = S(t)u0 − i

∫ t

0
S(t− t′)

(
F0(u(t′)) + F1(u(t′))

)
dt′.

4.1. Proof of Theorem 2.1. For R > 0 and T > 0 we consider the function space

(4.2) ER
T =

{
u ∈ C([0, T ] : L2(Rn)) / |||u|||T ≤ R

}
,

where

(4.3) |||u|||T ≡ ‖u‖L∞T L2
x

+ ‖u‖
L

8/n
T L4

x
.

It is not difficult to show that ER
T is a complete metric space.

It will be established that for appropriate choices of R and T , depending only on τ, ‖u0‖L2

and ‖v0‖L2 , that if u ∈ ER
T then w = Φ(u) belongs to ER

T and Φ : ER
T → ER

T is a contraction
map. Thus most of what follows is the estimation of |||Φ(u)|||T . We need to bound the nonlinear
term in (4.1).

First, by Proposition 3.1-3.2 and group properties we have that

(4.4) |||S(t)u0|||T ≤ C0‖u0‖L2 .

Now we stimate the norm ||| · |||T of the inhomogeneous part in (4.1) corresponding to F0(u).
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Proposition 3.1-(3.3) with (r1, q1) = (∞, 2) and (r2, q2) = (8/n, 4) yields

(4.5) ‖
∫ t

0
S(t− t′)F0(u(t′))dt′‖L∞T L2

x
≤ C‖F0(u)‖

L
8/(8−n)
T L

4/3
x

.

Again by Proposition 3.1-(3.4), choosing (r1, q1) = (r2, q2) = (8/n, 4), it follows that

(4.6) ‖
∫ t

0
S(t− t′)F0(u(t′))dt′‖

L
8/n
T L4

x
≤ C‖F0(u)‖

L
8/(8−n)
T L

4/3
x

.

Using Hölder’s and Minkowski’s inequalities we obtain the following:

‖F0(u)‖
L

8/(8−n)
T L

4/3
x

≤ ‖e−t/τv0‖L
4/(4−n)
T L2

x
‖u‖

L
8/n
T L4

x

≤ T (4−n)/4‖v0‖L2 |||u|||T .
(4.7)

Hence (4.5), (4.6) and (4.7) yield

(4.8) |||
∫ t

0
S(t− t′)F0(u(t′))dt′|||T ≤ C1T

(4−n)/4‖v0‖L2 |||u|||T .

Following the same arguments used to obtain (4.5) and (4.6) we get

‖
∫ t

0
S(t− t′)F1(u(t′))dt′‖L∞T L2

x
+ ‖

∫ t

0
S(t− t′)F1(u(t′))dt′‖

L
8/n
T L4

x
≤ C2‖F1(u)‖

L
8/(8−n)
T L

4/3
x

.

(4.9)

On the other hand, Hölder’s and Minkowski’s inequalities give

‖F1(u)‖
L

8/(8−n)
T L

4/3
x

≤ 1
τ ‖u‖L

8/n
T L4

x
‖
∫ t

0
e−(t−t′)/τ |u(t′)|2dt′‖

L
4/(4−n)
T L2

x

≤ 1
τ ‖u‖L

8/n
T L4

x
T (4−n)/4‖

∫ t

0
e−(t−t′)/τ |u(t′)|2dt′‖L∞T L2

x

≤ 1
τ ‖u‖L

8/n
T L4

x
T (4−n)/4 sup

t∈[0,T ]

∫ t

0
e−(t−t′)/τ‖u(t′)‖2

L4
x
dt′

≤ 1
τ T (4−n)/4‖u‖

L
8/n
T L4

x
T (4−n)/4‖u‖2

L
8/n
T L4

x

≤ 1
τ T (4−n)/2|||u|||3T .

(4.10)

The last estimate combined with estimate (4.9) implies

(4.11) |||
∫ t

0
S(t− t′)F1(u(t′))dt′|||T ≤ C2

τ T (4−n)/2|||u|||3T .

Hence (4.4), (4.8) and (4.11) yield

|||Φ(u)|||T ≤ C0‖u0‖L2 + C1T
(4−n)/4‖v0‖L2 |||u|||T + C2

τ T (4−n)/2|||u|||3T
≤ C0‖u0‖L2 + C1T

(4−n)/4‖v0‖L2R + C2
τ T (4−n)/2R3.

(4.12)

Now we let R = 2C0‖u0‖L2 . Therefore fixing T such that

(4.13) C1T
(4−n)/4‖v0‖L2 + C2

τ T (4−n)/2R2 ≤ 1
2
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we conclude that Φ : ER
T → ER

T .
Using that

F1(u)− F1(ũ) = ε
τ (u− ũ)

∫ t

0
e−(t−t′)/τ |u|2dt′

+ ε
τ ũ

∫ t

0
e−(t−t′)/τ

(
u(u− ũ) + ũ

(
u− ũ

) )
dt′,

(4.14)

a similar argument shows that

|||Φ(u)− Φ(ũ)|||T ≤ C1T
(4−n)/4‖v0‖L2 |||u− ũ|||T

+ C2
τ T (4−n)/2(|||u|||2T + |||u|||T |||ũ|||T + |||ũ|||2T )|||u− ũ|||T .

(4.15)

Consequently Φ : ER
T → ER

T is a contraction map and hence there exists a unique u ∈ ER
T with

Φ(u) = u.
A standard argument allow us to extend the result to the class

(4.16) ET ≡ C([0, T ] : L2(Rn)) ∩ L8/n([0, T ] : L2(Rn)).

Now we notice that by an analogous argument as used to estimate |||Φ(u)|||T and using the
fact that the unique solution u in ET satisfies u = Φ(u), one can show that this solution also
satisfies

(4.17) ‖u‖Lr
T Lq

x
≤ C0‖u0‖L2 + C1T

(4−n)/4‖v0‖L2 |||u|||T + C2
τ T (4−n)/2|||u|||3T < ∞,

where (r, q) is an admissible pair.
Next we show the persistence property of the solution v(t) in L2. Using (1.2), Minkowski’s

and Hölder’s inequalities we have, for t ∈ [0, T ], that

‖v(t)‖L2
x
≤ ‖v0‖L2 + 1

τ

t∫
0

e−(t−t′)/τ‖|u|2‖L2
x
dt′

≤ ‖v0‖L2 + e−t/τ

τ

( t∫
0

e
4t′

τ(4−n) dt′
)(4−n)/4

‖|u|2‖
L

4/n
T L2

x

≤ ‖v0‖L2 +
(

4−n
4

)4−n
4 1

τn/4 ‖u‖2

L
8/n
T L4

x

.

(4.18)

Finally we show how to extend the solution to any time T > 0. We first note L2-norm of the
solution u(t) is conserved which allows us to extended it to any positive time T . On the other
hand, (4.18) guarantee that the solution v(t) exists globally in L2 and the proof of the Theorem
2.1 is completed.

5. Local and Global Theory in the One Dimensional Case

In this section we will prove Theorem 2.3 and 2.4 regarding local wellposedness for the IVP
(1.3) in fractional Sobolev spaces. We use similar arguments as those given in the proof of
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Theorem 2.1; but here the process is more delicate since we need to handle fractional derivatives.
We also establish the global result advertised in Corollary 2.1.

5.1. Proof of Theorem 2.3. Let s ∈ (0, 1) and (u0, v0) ∈ Hs(R) × Hs(R). For T > 0 and
R > 0 we define

(5.1) XR
T = {u ∈ C([0, T ] : Hs(R)) / |||u|||T ≤ R} ,

where

(5.2) |||u|||T ≡ ‖u‖L∞T Hs
x

+ ‖u‖L4
T L∞x

,

and we consider the map

(5.3) Φ(u)(t) = S(t)u0 − i

∫ t

0
S(t− t′)

(
F0(u(t′)) + F1(u(t′))

)
dt′.

Now by Proposition 3.1-(3.2) and group properties we have that

(5.4) |||S(t)u0|||T ≤ C0‖u0‖Hs .

Proposition 3.1-(3.4) with (r2, q2) = (4,∞), Hölder’s and Minkowski’s inequalities yield

‖
∫ t

0
S(t− t′)F0(u(t′)) dt′‖L4

T L∞x
≤ C T 1/4‖e−t/τv0u‖L1

xL2
T

≤ CT 1/4‖e−t/τv0‖L2
xL∞T

‖u‖L2
xL2

T

≤ CT 3/4‖v0‖L2 |||u|||T .

(5.5)

Similarly, we obtain

‖
∫ t

0
S(t− t′)F1(u(t′)) dt′‖L4

T L∞x
≤ C

τ T 1/4‖F1(u)‖L1
xL2

T

≤ C
τ T 1/4T 5/4‖u‖2

L∞T L2
x
‖u‖L4

T L∞x

≤ C
τ T 3/2|||u|||3T ,

(5.6)

where we have used the proof of the Proposition 3.5-(ii) when s = 1/2.
Next, we estimate the nonlinear terms involving fractional derivatives. First we estimate the

term corresponding to F0(u) for the inhomogeneous part of the equation (5.3). For this purpose
we use that

‖Ds
x

∫ t

0
S(t− t′)F0(u(t′))dt′‖L2

x
= ‖

∫ t

0
S(t− t′)Ds

xF0(u(t′))dt′‖L2
x

≤ ‖
∫ t

0
S(t− t′)

{
Ds

x(e−t/τv0u)− e−t/τv0D
s
xu− uDs

x(e−t/τv0)
}

dt′‖L2
x

+ ‖
∫ t

0
S(t− t′)(e−t/τv0D

s
xu)‖L2

x
+ ‖

∫ t

0
S(t− t′)(uDs

x(e−t/τv0))‖L2
x

≡ B1 + B2 + B3.

(5.7)
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For the first term we apply Minkowski’s inequality, group properties, Proposition 3.4-(3.11),
and Hölder’s inequality in the time variable to obtain

B1 ≤ ‖Ds
x(e−t/τv0u)− e−t/τv0D

s
xu− uDs

x(e−t/τv0)‖L1
T L2

x

≤ C‖u‖L4
T L∞x

‖Ds
x(e−t/τv0)‖L

4/3
T L2

x

≤ CT 3/4‖u‖L4
T L∞x

‖Ds
xv0‖L2

≤ CT 3/4‖v0‖Hs |||u|||T .

(5.8)

Using Proposition 3.1-(3.3) with (r1, q1) = (∞, 2) and (r2, q2) = (4,∞) and Hölder’s inequality
we have

B2 ≤ C‖e−t/τv0D
s
xu‖

L
4/3
T L1

x

≤ CT 3/4‖v0‖L2‖Ds
xu‖L∞T L2

x

≤ CT 3/4‖v0‖L2‖u‖L∞T Hs
x

≤ CT 3/4‖v0‖L2 |||u|||T .

(5.9)

A similar argument shows that

B3 ≤ CT 3/4‖v0‖Hs‖u‖L∞T L2
x

≤ CT 3/4‖v0‖Hs |||u|||T .
(5.10)

Gathering the information in (5.7)-(5.10) we get

(5.11) ‖Ds
x

∫ t

0
S(t− t′)F0(u(t′))dt′‖L∞T L2

x
≤ CT 3/4‖v0‖Hs |||u|||T .

On the other hand, for the term corresponding to F1(u) we use Minkowski’s inequality, group
properties and Proposition 3.5-(i) to get

‖Ds
x

∫ t

0
S(t− t′)F1(u(t′))dt′‖L2

x
≤ ‖Ds

xF1(u)‖L1
T L2

x

≤ C
τ T 3/2‖u‖2

L4
T L∞x

‖u‖L∞T Hs
x

≤ C
τ T 3/2|||u|||3T .

(5.12)

Inserting the estimates (5.4)-(5.6) and (5.11)-(5.12) in the integral equation (5.3) it follows
that

|||Φ(u)|||T ≤ C0‖u0‖Hs + C1T
3/4‖v0‖Hs |||u|||T + C2

τ T 3/2|||u|||3T
≤ C0‖u0‖Hs + C1T

3/4‖v0‖HsR + C2
τ T 3/2R3.

(5.13)

Now we let R = 2C0‖u0‖Hs . Therefore fixing T such that

C1T
3/4‖v0‖Hs + C2

τ T 3/2R2 ≤ 1
2

(5.14)

we conclude that Φ : XR
T → XR

T .
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Using similar estimates we show that

|||Φ(u)− Φ(ũ)|||T ≤ C1T
3/4‖v0‖Hs |||u− ũ|||T

+ C2
τ T 3/2(|||u|||2T + |||u|||T |||ũ|||T + |||ũ|||2T )|||u− ũ|||T .

(5.15)

Consequently Φ : XR
T → XR

T is a contraction map and hence there exists a unique u ∈ XR
T with

Φ(u) = u.
Similarly as was estimated ‖Φ(u)‖L4

T L∞x
and using that the solution satisfies Φ(u) = u we

obtain the additional regularity in (2.10).
Now we see that the solution v(t) remains in Hs. Indeed, using (1.2), Hölder’s inequality and

Proposition 3.4-(3.11), for any t ∈ [0, T ] we have

‖v(t)‖L2 + ‖Ds
xv(t)‖L2

≤ ‖v0‖L2 + ‖Ds
xv0‖L2 + 1

τ

∫ t

0
e−(t−t′)/τ‖|u|2‖L2 dt′ + 1

τ

∫ t

0
e−(t−t′)/τ‖Ds

x(|u|2)‖L2 dt′

≤ ‖v0‖Hs + 1
τ ‖|u|

2‖L1
T L2

x
+ 1

τ ‖D
s
x(|u|2)‖L1

T L2
x

≤ ‖v0‖Hs + 1
τ ‖u‖L4

T L∞x
‖u‖

L
4/3
T L2

x
+ C

τ ‖u‖L4
T L∞x

‖Ds
xu‖

L
4/3
T L2

x

≤ ‖v0‖Hs + C
τ T 3/4‖u‖L4

T L∞x

(
‖u‖L∞T L2

x
+ ‖Ds

xu‖L∞T L2
x

)
.

(5.16)

Then the proof of Theorem 2.3 is completed.

Next prove local and global results when s ∈ [1/2, 1] and k ∈ Is. Here we use the same
notation as in the proof of Theorem 2.3.

5.2. Proof of Theorem 2.4. First we let δ := min{1/4, k− s+1/2} and we apply Proposition
3.3 with θ = 1− 2δ, Proposition 3.4-(3.10) and Minkowski’s, Hölder’s and Sobolev’s inequalities
to obtain

‖Ds
x

∫ t

0
S(t− t′)F0(u(t′))dt′‖L2

x
= ‖D1/2−δ

x

∫ t

0
S(t− t′)(Ds−1/2+δ

x (e−t/τv0u))dt′‖L2
x

≤ CT δ‖Ds−1/2+δ
x (e−t/τv0u)‖

L
1/(1−δ)
x L2

T

≤ CT δ
(
‖Ds−1/2+δ

x u‖
L

2/(1−2δ)
x L2

T

‖e−t/τv0‖L2
xL∞T

+ ‖u‖
L

2/(1−2δ)
x L2

T

‖Ds−1/2+δ
x (e−t/τv0)‖L2

xL∞T

)
≤ CT δ+1/2‖v0‖Hs−1/2+δ‖u‖L∞T Hs

x

≤ CT δ+1/2‖v0‖Hk |||u|||T .

(5.17)
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Further by Proposition 3.3 and Proposition 3.5-(ii) we have

‖Ds
x

∫ t

0
S(t− t′)F1(u(t′))dt′‖L2

x
= ‖D1/2

x

∫ t

0
S(t− t′)Ds−1/2

x F1(u(t′))dt′‖L2
x

≤ C
τ ‖D

s−1/2
x F1(u)‖L1

xL2
T

≤ C
τ ( T 5/4 + T 3/2 )‖u‖2

L∞T H
s−1/2
x

|||u|||T .

(5.18)

Therefore we see from (5.4)-(5.6) and (5.17)-(5.18) that

|||Φ(u)|||T
≤ C0‖u0‖Hs + C1(T 3/4 + T δ+1/2 )‖v0‖Hk |||u|||T + C2

τ ( T 5/4 + T 3/2 )‖u‖2

L∞T H
s−1/2
x

|||u|||T

≤ C0‖u0‖Hs + C1(T 3/4 + T δ+1/2 )‖v0‖HkR + C2
τ (T 3/2 + T 5/4 )R3.

(5.19)

Thus we first choose R = 2C0‖u0‖Hs and then T satisfying

(5.20) C1(T 3/4 + T δ+1/2 )‖v0‖Hk + C2
τ (T 3/2 + T 5/4 )R2 ≤ 1

2 .

Then we conclude that Φ : XR
T → XR

T . Similarly as in the previous cases we show that Φ :
XR

T → XR
T is a contraction map and hence there exists a unique u ∈ XR

T with Φ(u) = u.
Now we let (r, q) with q ∈ [2,∞] and 2/r = 1/2−1/q. Using (3.5), (3.7), Proposition 3.1-(3.2,

3.4) and that the solution u satisfies u = Φ(u), we have

‖∂xu‖L∞x L2
T

+ ‖u‖Lr
T Lq

x
≤ C0‖u0‖Hs−1/2 + C1

(
1 + T 1/4

)
‖F0(u)‖L1

xL2
T

+ C2
τ

(
1 + T 1/4

)
‖F1(u)‖L1

xL2
T
.

(5.21)

Hence, the additional regularities in (2.14) hold.
Finally, using (1.2), Hölder’s inequality, and Proposition 3.4-(3.11), for any t ∈ [0, T ] we have

‖v(t)‖L2 + ‖Dk
xv(t)‖L2

≤ ‖v0‖L2 + ‖Dk
xv0‖L2 + 1

τ

∫ t

0
e−(t−t′)/τ‖|u|2‖L2dt′ + 1

τ

∫ t

0
e−(t−t′)/τ‖Dk

x(|u|2)‖L2dt′

≤ ‖v0‖Hk + 1
τ ‖|u|

2‖L1
T L2

x
+ 1

τ ‖D
k
x(|u|2)‖L1

T L2
x

≤ ‖v0‖Hk + 1
τ ‖u‖L4

T L∞x
‖u‖

L
4/3
T L2

x
+ C

τ ‖u‖L4
T L∞x

‖Dk
xu‖

L
4/3
T L2

x

≤ ‖v0‖Hk + C
τ T 3/4‖u‖L4

T L∞x
‖u‖L∞T Hs

x
,

(5.22)

where we also have used that k ≤ s (k ∈ Is). Hence v(t) ∈ Hk in [0, T ], and we complete the
proof of Theorem 2.3.

Finally we show how to extend the above solutions to any positive time T .
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5.3. Proof of Corollary 2.1. Let v0 ∈ Hk, k ∈ Is and let [0, T ∗) be the maximal time
interval on which the Cauchy problem (1.3) has a unique solution u ∈ XT = C([0, T ] :
Hs(R))

⋂
L4([0, T ] : L∞(R)) for any T < T ∗. Suppose that T ∗ < ∞, we will show that it

leads to contradiction.
First we note that the solution u(x, t) of the IVP (1.3) satisfies Φ(u) = u and from (5.19) we

see that

|||u|||T ≤ C0‖u0‖Hs + C1(T 3/4 + T δ+1/2 )‖v0‖Hk |||u|||T
+ C2

τ (T 3/2 + T 5/4 )‖u‖2

L∞T H
s−1/2
x

|||u|||T .
(5.23)

for any T < T ∗.
Now we consider two cases:
(i) s = 1/2 and k ∈ [0, 1/2].

From (5.23), using the conservation law (2.1) in L2 and (5.23) we have that

(5.24) |||u|||T ≤ C0‖u0‖H1/2 + µ(T )|||u|||T
where

(5.25) µ(T ) = C1(T 3/4 + T 1/2 )‖v0‖Hk + C2
τ (T 3/2 + T 5/4 )‖u0‖2

L2 .

Hence we can take T̃ ∈ [0, T ∗] so that µ(T̃ ) ≤ 1/2 with T̃ depending only on ‖u0‖L2 and
‖v0‖Hk . Then from (5.24) we obtain

(5.26) |||u|||T ′ ≤ 2C0‖u0‖H1/2

for any T ′ ∈ [0, T̃ ].
If T̃ = T ∗, we have that the solution u of the IVP (1.3) can be extended to the time

interval [0, T ∗] with

sup
t∈[0,T ∗]

‖u(t)‖H1/2 ≤ 2C0‖u0‖H1/2 ,

and we see that it contradicts the maximality of T ∗. Therefore, suppose that T̃ < T ∗.
Let m ∈ N be such that T ∗ ≤ mT̃ and replace T̃ by T̃ = T ∗/m.

Now consider the Cauchy problem

(5.27)

{
i∂tu

(1) + 1
2∂2

xu(1) = e−t/τu(1)v0(x) + ε
τ u
∫ t
0 e−(t−t′)/τ |u(1)|2dt′,

u(1)(x, T̃ ) = u(x, T̃ ), x ∈ R.

Uniqueness of solutions yields that

(5.28)

{
u(x, t), t ∈ [0, T̃ ],
u(1)(x, t), t ∈ [T̃ , 2T̃ ],

is a solution of IVP (1.3) in [0, 2T̃ ].
Using that ‖u0‖L2 = ‖u(T̃ )‖L2 and the same procedure to obtain (5.26), we have

|||u|||2T̃ ≤ max
{

2C0‖u0‖H1/2 , 2C0‖u(T̃ )‖H1/2

}
≤ max

{
2C0‖u0‖H1/2 , 4C2

0‖u0‖H1/2

}
.

(5.29)



18 A. J. CORCHO AND F. LINARES

Then, repeating this process m times, we see that

(5.30) |||u|||T ∗ ≤ max
{
2C0‖u0‖H1/2 , 4C2

0‖u0‖H1/2 , ...., (2C0)m‖u0‖H1/2

}
which contradicts the maximality of T ∗. Hence T ∗ = +∞.

Finally, we observe that for any T > 0 we have

|||u|||T ≤ Q(T ) := max
{

2C0‖u0‖H1/2 , 4C2
0‖u0‖H1/2 , ...., (2C0)m(T )‖u0‖H1/2

}
where m(T ) =

[
T
T̃

]
+ 1. Hence, without loss of generality, we may assume that 2C0 > 1

and consequently

‖u‖L∞T H1/2 ≤ Q(T ) ≤ (2C0)T/T̃+1‖u0‖H1/2 ,

which gives (2.16) in Corollary (2.1).

(ii) 1/2 < s ≤ 1 and k ∈ Is = (s− 1/2, s].

Since Hs ↪→ H1/2, we may regard the solution as being contained in H1/2. Moreover

(5.31) ‖u‖L∞T Hs−1/2 ≤ ‖u‖L∞T H1/2 ≤ Q(T ).

Again, we suppose that T ∗
s < ∞, where [0, T ∗

s ) is the maximal time interval of existence
of the solution.

Now we put

(5.32) Q0 := sup {Q(T ) : T ∈ [0, T ∗
s ] } .

Then from (5.23) and (5.31) for any T ∈ [0, T ∗
s ) we have

(5.33) |||u|||T ≤ C0‖u0‖Hs + µ(T )|||u|||T
where

(5.34) µ(T ) = C1(T 3/4 + T 1/2 )‖v0‖Hk + C2
τ (T 3/2 + T 5/4 )Q2

0.

Now using (5.33), (5.34), we can choose T̃ , depending only on ‖v0‖Hk and Q0, sufficiently
small such that µ(T̃ ) ≤ 1/2, and consequently

(5.35) |||u|||T ′ ≤ 2C0‖u0‖Hs

for any T ′ ∈ [0, T̃ ]. Similar to case (i) we get T ∗
s = +∞.

Finally, we note that from (5.22) we have that the solution v(t) exists globally in Hk.
Then the proof of Theorem 2.4 is completed.

6. Local and Global Theory in H1(Rn)×H1((R)n

Here we prove the Theorem 2.2. The proof of this theorem is similar to the proof of Theorem
2.1 so we only give a sketch of its proof.
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6.1. Proof of Theorem 2.2. In this case, we define a new norm as follows:

(6.1) |||u|||T ≡ ‖u‖L∞T H1
x

+ ‖u‖
L

8/n
T L4

x
+ ‖∇u‖

L
8/n
T L4

x
,

and for R > 0 and T > 0 we consider the function space

(6.2) Y R
T =

{
u ∈ C([0, T ] : H1(Rn)) / |||u|||T ≤ R

}
.

First, by Proposition 3.1-(3.2) and group properties we have that

(6.3) |||S(t)u0|||T ≤ C0‖u0‖H1 .

Since the norm ‖Φ(u)‖L∞T L2
x

+ ‖Φ(u)‖
L

8/n
T L4

x
was estimated in the proof of Theorem 2.1, we

only need estimate the terms involving gradients.
Similarly as was obtained the estimates (4.8) and (4.11) we obtain

‖∇
∫ t

0
S(t− t′)F0(u(t′))dt′‖

L
8/n
T L4

x
≤ C‖∇F0(u)‖

L
8/(8−n)
T L

4/3
x

≤ CT (4−n)/4‖v0‖H1(‖u‖
L

8/n
T L4

x
+ ‖∇u‖

L
8/n
T L4

x
)

≤ CT (4−n)/4‖v0‖H1 |||u|||T ,

(6.4)

and

‖∇
∫ t

0
S(t− t′)F1(u(t′))dt′‖

L
8/n
T L4

x
≤ C‖∇F1(u)‖

L
8/(8−n)
T L

4/3
x

≤ C
τ T (4−n)/2‖u‖2

L
8/n
T L4

x

‖∇u‖
L

8/n
T L4

x

≤ C
τ T (4−n)/2‖u‖2

L
8/n
T L4

x

|||u|||T .

(6.5)

Hence, from (6.3)-(6.5) we have

(6.6) ‖Φ(u)‖T ≤ C0‖u0‖H1 + C1T
(4−n)/4‖v0‖H1 |||u|||T + C2

τ T (4−n)/2‖u‖2

L
8/n
T L4

x

|||u|||T ,

and the rest of the proof of our local result is standard.
Now we extends the above solution to any positive time T .
We suppose the maximal time interval of existence of the solution, [0, T ∗

1 ], is finite. Using
that our solution satisfies the integral equation Φ(u) = u and estimate (6.6), we have

(6.7) ‖u‖T ≤ C0‖u0‖H1 + µ(T )|||u|||T for T ∈ [0, T ∗
1 ],

where

(6.8) µ(T ) = C1T
(4−n)/4‖v0‖H1 + C2

τ T (4−n)/2‖u‖2

L
8/n
T L4

x

.

But we may regard the solution as being contained in L2, then using Theorem 2.1 we see that
the norm ‖u‖

L
8/n
T L4

x
is controlled globally by a constant. Similarly to the proof of Corollary 2.1,

this fact yield a contradiction with T ∗
1 < ∞. Then the proof of Theorem 2.2 is completed.
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