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Abstract. In this paper, we give a lower bound for the spectrum of
the Laplacian on minimal hypersurfaces immersed into Hm × R. As an
application, in dimension 2, we prove that a complete minimal surface
with finite total extrinsic curvature has finite index. On the other hand,
for stable, minimal surfaces in H3 or in H2×R, we give an upper bound
on the infimum of the spectrum of the Laplacian and on the volume
growth.
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1. Introduction

In this paper we give a lower bound on the infimum of the spectrum of
the Laplacian ∆g on a complete, orientable hypersurface (Mm, g) minimally
immersed into (Hm ×R, ĝ) equiped with the product metric, with an appli-
cation to the finiteness of the index in dimension 2. In dimension 2, under
the assumption that the minimal surface is stable, we give an upper bound
on the infimum of the spectrum and on the volume growth. We also consider
the case when the minimal surface has finite index.

Let us fix some notations. Let ν denote a unit normal field along M and let
v = ĝ(ν, ∂t) be the component of ν with respect to the unit vector field ∂t
tangent to the R-direction in the ambient space.

In Section 3, we give a lower bound of the spectrum of ∆g which relies on
the inequality −∆gb ≥ (m − 2) + v2 satisfied by a “horizontal” Busemann
function b (see Proposition 3.1 and Corollary 3.2). In Section 4, we give
two applications to minimal surfaces in H2 × R. We prove that a complete
minimal surface with finite total extrinsic curvature has finite index (Corol-
lary 4.2) and we obtain a lower bound for the spectrum of the Laplacian on
a complete minimal surface contained in a slab (Proposition 4.4).

In Section 5.1, we consider the operator ∆g + a + bKg on a complete Rie-
mannian surface. When a ≥ 0 and b > 1/4, we show that the positivity of
this operator implies an upper bound on the infimum of the spectrum of ∆g

and on the volume growth of M (see Proposition 5.1 and Proposition 5.3).
In Section 5.2, we apply these results to stable minimal surfaces in H3 or
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H2 × R, generalizing and extending results of A. Candel, [6]. Candel used
Pogorelov’s method, [19]. We use the method of Colding and Minicozzi,
[10, 9].

In Section 6, we give some applications of our general lower bounds on the
spectrum to higher dimensional hypersurfaces. In Section 2, we provide
some preliminary technical lemmas.

The third author gratefully acknowledges CAPES and FAPEAL for their
financial support and Institut Fourier for their hospitality during the prepa-
ration of this paper.

2. Preliminary computations

In this section, we make some preliminary computations for later reference.
For the sake of simplicity, we work in the following model for the hyperbolic
space Hm+1,

(1)
{

Hm+1 = Rm × R,
h = e2s(dx2

1 + · · ·+ dx2
m

)
+ ds2 at the point (x, s) ∈ Hm+1.

These coordinates are known as “horocyclic coordinates” because the slices
Rm × {s} are horospheres and the coordinate function s is a Busemann
function. They are quite natural when some Busemann function plays a
special role, as will be the case in the sequel. Let γ0 be the geodesic ray

(2) γ0 :
{

[0,∞)→ Hm+1,
u 7→ γ0(u) = (0, . . . , 0, u).

The Busemann function (see [1], p. 23) associated with γ0 is the function

(3) B :
{

Hm+1 → R,
(x, s) 7→ B(x, s) = s.

In the sequel, we denote by

(4)
{
Dh the Levi-Civita connexion,
∆h the geometric (i.e. non-negative) Laplacian,

for the hyperbolic metric h on Hm+1.

Lemma 2.1. With the above notations, we have the formulas,
(5) ∆hB = −m,

(6) HesshB = e2s(dx2
1 + · · ·+ dx2

m

)
at the point (x, s) ∈ Hm+1. In particular, if we decompose the vector u ∈
T(x,s)Hm+1 h-orthogonally as u = (ux, us), we have,

(7) HesshB(u, u) = h(ux, ux).

The proof is straightforward. �

Recall the following general lemmas.



EIGENVALUE ESTIMATES FOR HYPERSURFACES IN Hm × R 3

Lemma 2.2. Let (Mm, g)# (M̂m+1, ĝ) be an orientable isometric immer-
sion with unit normal field ν and corresponding normalized mean curvature
H. Let F̂ : M̂ → R be a smooth function and let F := F̂ |M be its restriction
to M . Then, on M ,

∆gF = ∆ĝF̂ |M + HessĝF̂ (ν, ν)−mHdF̂ (ν).

Proof. See for example [11], Lemma 2. �

Lemma 2.3. Assume that the manifold (M, g) carries a function f which
satisfies

|df |g ≤ 1 and −∆gf ≥ c for some constant c > 0.
Then, any smooth, relatively compact domain Ω ⊂M satifies the isoperime-
tric inequalities

Volm−1(∂Ω) ≥ cVolm(Ω) and λ1(Ω) ≥ c2

4 ,

where λ1(Ω) is the least eigenvalue of ∆g in Ω, with Dirichlet boundary
condition.

Proof. Integration by parts and Cauchy-Schwarz. �

3. Hypersurfaces in Hm × R

We consider orientable, isometric immersions (Mm, g) # (M̂m+1, ĝ), with
unit normal ν, where M̂ = Hm × R with the product metric ĝ = h + dt2.
We take the model (1) for the hyperbolic space (here with dimension m), so
that M̂ is the product Rm−1 × R× R, with the Riemannian metric ĝ given
by

ĝ = e2s(dx2
1 + · · ·+ dx2

m−1) + ds2 + dt2.

We define the function b̂ on M̂ by
(8) b̂(x1, . . . , xm−1, s, t) = s.

This function is in fact a Busemann function of M̂ (seen as a Cartan-
Hadamard manifold) associated with a “horizontal” geodesic (justifying the
name “horizontal” Busemann function used in the introduction).

We call b := b̂|M the restriction of b̂ to M . We decompose the unit vector ν
according to the product structure Rm−1×R×R, orthogonally with respect
to ĝ, as
(9) ν = νx + w∂s + v∂t.

Applying Lemma 2.2, we obtain the equation
(10) ∆gb = ∆ĝ b̂|M + Hessĝ b̂(ν, ν)−mHĝ(ν, ∂s).
Using (7) and (9), it can we rewritten as
(11) −∆gb = (m− 1)− |νx|2 +mHw,

and we note that |νx|2 + v2 + w2 = 1. It follows that
(12) −∆gb ≥ (m− 2) + v2 + w2 −mH|w|.
For minimal hypersurfaces, we deduce from (12) the following results.
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Proposition 3.1. Let (Mm, g) # (Hm × R, ĝ) be a complete, orientable,
minimal hypersurface, with normal vector ν. Recall that v = ĝ(ν, ∂t). Then,
(13) −∆gb ≥ (m− 2) + v2.

Corollary 3.2. Let (Mm, g) # (Hm × R, ĝ) be a complete, orientable, mi-
nimal hypersurface, with normal vector ν. Let v = ĝ(ν, ∂t). Let λσ(∆g) be
the infimum of the spectrum of the Laplacian ∆g on M . Then

(14) λσ(∆g) ≥
(m− 2 + infM v2

2
)2 ≥ (m− 2

2
)2
.

Corollary 3.3. Let (Mm, g)# (Hm×R, ĝ) be a complete, orientable, min-
imal hypersurface, with m ≥ 3. Then (M, g) is non-parabolic.

Proof. Apply Proposition 10.1 of [15] using (14). �

When the mean curvature H is non-zero, we also obtain the following result
from inequality (12),

Proposition 3.4. Let (Mm, g) # (Hm × R, ĝ) be a complete, orientable
hypersurface, with normal vector ν and constant mean curvature H, 0 ≤
H ≤ m−1

m . Recall that v = ĝ(ν, ∂t). Then,

(15) −∆gb ≥ (m− 2)(1−
√

1− v2) + (m− 2)(1− mH

m− 2)
√

1− v2.

Remarks. (i) Inequalities (13) and (14) are sharp. Indeed, take the hori-
zontal slice M = Hm × {0}, in that case v = 1, or take M = P × R, where
P is some totally geodesic (m − 1)-space in Hm, in that case v = 0. (ii)
In dimension 2, Corollary 3.2 is empty in general. However, inequality (13)
is useful even in dimension 2, as we will show in Section 4. (iii) Inequality
(15) generalizes an earlier result of the second author ([8]) for submanifolds
immersed in Hadamard manifolds. For other estimates, see also [5]. We
point out that it is more convenient in our context to use the “horizontal”
Busemann function rather than the hyperbolic distance function as in [8].
(iv) The above inequalities still hold if Mm is only assumed to have mean
curvature bounded from above by H.

4. Applications to minimal hypersurfaces in Hm × R

4.1. Index of minimal surfaces immersed in H2 × R. The stability
operator of a minimal hypersurface Mm # Hm × R is given by
(16) JM = ∆ + (m− 1)(1− v2)− |A|2,
where v is the vertical component of the unit normal ν, and A the second
fundamental form of the immersion (see [3]). It turns out that the spectrum
of the operator ∆ + (m − 1)(1 − v2) is bounded from below by a positive
constant. More precisely, we have the following result.

Proposition 4.1. Let (Mm, g) # (Hm × R, ĝ) be a complete, orientable,
minimal hypersurface with normal vector ν. Let v = ĝ(ν, ∂t). Then the
spectrum of the operator ∆g + (m− 1)(1− v2) on M is bounded from below
by (m−1

2 )2.
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Proof. We start from the inequality (13), −∆gb ≥ (m−2)+v2. We multiply
this inequality by f2, where f ∈ C∞0 (M), and integrate by parts using the
fact that |db|g ≤ 1. We obtain (all integrals are taken with respect to the
Riemannian measure dvg),

(m− 2)
∫
M
f2 +

∫
M
v2f2 ≤

∫
M
|df2| ≤ 2

∫
M
|f ||df |.

We re-write this inequality as

(m− 1)
∫
M
f2 ≤ 2

∫
M
|f ||df |+

∫
M

(1− v2)f2.

Using the Cauchy-Schwarz inequality 2|f |.|df | ≤ 1
a |df |

2 + af2 for a > 0, we
obtain

a(m−1−a)
∫
M
f2 ≤

∫
M

(
|df |2+a(1−v2)f2) ≤ ∫

M

(
|df |2+(m−1)(1−v2)f2),

provided that 0 ≤ a ≤ m − 1. We can now maximize the constant in the
left-hand side by choosing a = (m− 1)/2. �

Remark. We observe that equality is achieved in the above inequality when
M is a slice Hm×{t0}, in which case v = 1. If we assume that v2 ≤ α2 < 1,
the spectrum of ∆g+(m−1)(1−v2) is bounded from below by (m−1)(1−α2).

Corollary 4.2. Let (M2, g)# (H2 ×R, ĝ) be a complete, orientable, mini-
mal surface, with second fundamental form A. If

∫
M |A|2dvg is finite, then

the immersion has finite index.

Proof. When
∫
M |A|2 is finite, the second fundamental form tends to zero

uniformly at infinity (see [3], Theorem 4.1). Using Proposition 4.1 with
m = 2, it follows that the essential spectrum of the Jacobi operator JM
is bounded from below by 1

4 . Since the operator JM is also bounded from
below, it follows that it has only finitely many negative eigenvalues (see [2],
Proposition 1). �

Remark. This corollary answers a question raised in [3], where the finite-
ness of the index of JM is proved in dimension m ≥ 3 under the assumption
that

∫
M |A|m is finite, and in dimension 2 under the assumption that both∫

M v2 and
∫
M |A|2 are finite. In dimension m ≥ 3, the index of JM is

bounded from above by a constant times
∫
M |A|m (see [3]). In the next

section, we investigate bounds on the index in dimension 2.

4.2. Bounds on the index of minimal surfaces immersed in H2 ×R.

Proposition 4.3. Let (M2, g) # (H2 × R, ĝ) be a complete, orientable,
minimal surface, with second fundamental form A. If

∫
M |A|2 dvg is finite,

then for any r > 1, there exists a constant Cr such that the index of the
immersion is bounded from above by Cr

∫
M |A|2r dvg.

Remarks. (i) Recall that the assumption that
∫
M |A|2 dvg is finite implies

that A tends to zero uniformly at infinity. It follows that the integrals∫
M |A|2r dvg are all finite. (ii) Our proof provides a constant Cr which tends
to infinity when r tends to 1. We do not know whether there is a bound of
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the index in terms of
∫
M |A|2 dvg as this is the case for minimal surfaces in

R3 (see [22]).

Proof. As in Section 4.1, we write the Jacobi operator as J = ∆g +1−v2−
|A|2. The closure Q̃ of the quadratic form Q[f ] =

∫
M

(
|df |2 +(1−v2)f2) dvg

with domain C1
0 (M) satisfies the Beurling-Deny condition (if f is in the

domain of Q̃, then so is |f | and Q̃[|f |] = Q̃[f ], see [13], Theorem 1.3.2) and,
by Proposition 4.1, the Cheeger inequality

(17)
∫
M
f2 dvg ≤ 4Q[f ], ∀f ∈ C1

0 (M).

On the other-hand, the surface M satisfies the Sobolev inequality

(18)
∫
M
f2 dvg ≤ S

( ∫
M
|df |2g dvg

)2
, ∀f ∈ C1

0 (M),

for some constant S > 0. Indeed, this follows from the Sobolev inequality
for minimal surfaces in H2 × R, using the fact that the ambient space has
non-positive curvature and infinite injectivity radius (see [16]).

From the above Cheeger and Sobolev inequalities, we can establish that for
any q ≥ 1, there exists a constant Dq such that for any f ∈ C1

0 (M),

(19)
( ∫

M
|f |2q dvg

)1/q ≤ DqQ[f ].

When q is an integer, the inequality follows from an induction argument and
we can conclude by interpolation.

We can then apply Theorem 1.2 of [18] to conclude that the index is less
than epDp

q

∫
M |A|2p dvg where p = q/(q − 1). �

4.3. Hypersurfaces in a slab. In this section, we use the computations
of Section 3 to give a lower bound on the spectrum of the Laplacian on a
complete minimal surface immersed in a slab H2 × [−a, a], a > 0.

Let us first consider functions on Hm × R depending only on the height t,
namely β̂(x, s, t) = f(t). In this case, dβ̂ = f ′(t)dt, and

Hessĝβ̂(X,Y ) = f ′′(t)ĝ(X, ∂t)ĝ(Y, ∂t).
In particular,

∆ĝβ̂ = −f ′′(t) and Hessĝβ̂(ν, ν) = v2f ′′(t).

Let us define β = β̂|M . Using Lemma 2.2, we have
(20) −∆gβ = (1− v2)f ′′(t) +mHvf ′(t).
In order to estimate the first eigenvalue of a minimal hypersurface Mm #
Hm × R, we use the identity (20) with some particular choice of f . For
instance, let β̂(x, s, t) = 1

2 t
2. In this case, we have

−∆gβ = (1− v2).
Assume now that Mm # Hm × [−a, a], for some a > 0. Then,

−∆gβ = (1− v2) and |dβ| ≤ a.
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If we define Z = b+ β, where b is the restriction of the Busemann function
b̂ to Mm, we can use the last inequality in (12) to obtain

(21) −∆Z ≥ m− 1 and |dZ| ≤
√

1 + a2.

Using the above notation and Lemma 2.3, we have the following estimate,

Proposition 4.4. Given a > 0, let (Mm, g)# (Hm × [−a, a], ĝ) be a com-
plete, immersed, orientable, minimal hypersurface. Then, the infimum of
the spectrum of ∆g on M is positive. More precisely,

(22) λσ(∆g) ≥
(m− 1)2

4(1 + a2) .

5. Bounds derived from a stability assumption

Let (M, g) be a complete Riemannian surface with (non-negative) Laplace
operator ∆g and Gaussian curvature Kg. Let a, b be real numbers, with
a ≥ 0 and b > 1/4. Let L be the operator L = ∆g + a+ bKg.

Let Ind(L,Ω) denote the number of negative eigenvalues of the operator L
in Ω, with Dirichlet boundary conditions on ∂Ω. The index, Ind(L), of the
operator L is defined to be the supremum

Ind(L) = sup{Ind(L,Ω) | Ω bM}
taken over the relatively compact subdomains Ω in M .

In Section 5.1, we state two intrinsic consequences of the assumption that the
operator L has finite index. In Sections 5.2 and 5.3, we consider applications
to minimal and cmc surfaces.

5.1. Intrinsic results.

Proposition 5.1. Let (M, g) be a complete non-compact Riemannian sur-
face. Let a ≥ 0 and b > 1

4 . Denote by ∆g the (non-negative) Laplacian and
by Kg the Gaussian curvature of (M, g). Denote by λσ(∆g) the infimum of
the spectrum of ∆g and by λe(∆g) the infimum of the essential spectrum of
∆g.

(1) If the operator ∆g + a+ bKg is non-negative on C∞0 (M), then,

λσ(∆g) ≤
a

4b− 1 .

(2) If the operator ∆g + a + bKg has finite index on C∞0 (M) and if M
has infinite volume, then,

λe(∆g) ≤
a

4b− 1 .

Proof. The proof uses the method of Colding-Minicozzi [10], and more
precisely Lemma 1.8 in the second author’s paper [9].
Proof of Assertion 1. We can assume the surface to have infinite volume
(otherwise λσ(∆g) = 0 because the function 1 is in L2(M,vg) and the esti-
mate is trivial). Fix a point x0 ∈ M and let r(x) denote the Riemannian
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distance to the point x0. Given S > R > 0, let B(R) denote the open geo-
desic ball in M with center x0 and radius R. Let C(R,S) denote the open
annulus B(S) \ B̄(R). Let V (R) denote the volume of B(R) and L(R) the
length of its boundary ∂B(R). Let G(R) denote the integral curvature of
B(R), G(R) =

∫
B(R)Kg(x) dvg(x), where dvg denotes the Riemannian mea-

sure. The main idea in [9] is to use the work of Shiohama-Tanaka [20, 21]
on the length of geodesic circles, where it is shown that the function L(r) is
differentiable almost everywhere and related to the Euler characteristic and
to the integral curvature of geodesic balls by the formula ([9], Theorem 1.7)

L′(r) ≤ 2πχ(B(r))−G(r) ≤ 2π −G(r),
where the second inequality comes from the fact that the Euler characteristic
of balls is less than or equal to 1. Recall the following lemma.

Lemma 5.2 (Lemma 1.8. in [9]). For 0 < R < S, let ξ : [R,S] → R be
such that ξ ≥ 0, ξ′ ≤ 0, ξ′′ ≥ 0 and ξ(S) = 0. Then∫

C(R,S)Kgξ
2(r) dvg ≤ −ξ2(R)G(R) + 2πξ2(R)− 2ξ(R)ξ′(R)L(R)

−
∫
C(R,S)(ξ2)′′(r) dvg.

To prove Assertion 1,we choose ξ as in Lemma 5.2, and a function f :
B(S)→ R such that f(r) ≡ ξ(R) on B(R), f(r) = ξ(r) on C(R,S), and we
write the positivity assumption,

0 ≤
∫
M
|df |2g dvg + a

∫
M
f2 dvg + b

∫
M
Kgf

2 dvg.

On the ball B(R), we have∫
B(R)

Kgf
2 dvg = ξ2(R)G(R) and

∫
B(R)

|df |2 dvg = 0.

Using Lemma 5.2, we obtain
0 ≤

∫
C(R,S)(ξ′)2(r) dvg + a

∫
M f2 dvg + bξ2(R)G(R)− bξ2(R)G(R)

+2πbξ2(R)− 2bξ(R)ξ′(R)L(R)− b
∫
C(R,S)(ξ2)′′(r) dvg,

and hence,

(23)
0 ≤ (1− 2b)

∫
C(R,S)(ξ′)2(r) dvg + a

∫
M f2 dvg

+2πbξ2(R)− 2bξ(R)ξ′(R)L(R)− 2b
∫
C(R,S) ξ(r)ξ′′(r) dvg.

We choose ξ(r) = (S− r)k in [R,S] for k ≥ 1 big enough (we will eventually
let k tend to infinity). Then ξ(r)ξ′′(r) = (1− 1

k )(ξ′(r))2. It follows that

0 ≤ (1− 4b+ 2b/k)
∫
M |df |2 dvg + a

∫
M f2 dvg

+2b
(
π(S −R)2k + kL(R)(S −R)2k−1

)
.

Using the fact that
∫
M f2 dvg ≥ (S −R)2kV (R), we obtain

(24)
λσ(∆g) ≤

∫
M |df |2 dvg∫
M f2 dvg

≤ a

4b− 1− 2b/k + 2b
(4b− 1− 2b/k)V (R)

(
π + kL(R)

S−R
)
.
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We first let S tend to infinity, then we let R tend to infinity, using the fact
that M has infinite volume, and we let finally k tend to infinity to obtain

λσ(∆g) ≤
a

4b− 1 .

Proof of Assertion 2. It is a well-known fact that the finiteness of the index
of the operator ∆g+a+bKg implies that it is non-negative outside a compact
set (see [14], Proposition 1). We choose R0 big enough for ∆g + a + bKg

to be non-negative in M \ B(R0). Next, for S > R > R1 + 1 > R0 + 1, we
choose ξ as in Lemma 5.2, and a test function f as follows

(25) f(r) =


0 in B(R1),
ξ(R)(r −R1) in C(R1, R1 + 1),
ξ(R) in C(R1 + 1, R),
ξ(r) in C(R,S).

Following the same scheme as for Assertion 1, and under the assumption that
the volume of M is infinite, we can prove that the bottom of the spectrum
of ∆g inM \B(R1), with Dirichlet boundary conditions on ∂B(R1), satisfies
the inequality

λσ(∆g,M \B(R1)) ≤ a

4b− 1 .

To conclude, we use the fact that

λe(∆g) = lim
R→∞

λσ(∆g,M \B(R)).

�

Proposition 5.3. Let (M, g) be a complete Riemannian surface with (non-
negative) Laplace operator ∆g and Gaussian curvature Kg. Let V (r) denote
the volume of the geodesic ball of radius r inM (with center some given point
x0). Let a, b be positive real numbers, with b > 1/4. Let α0 =

√
a/(4b− 1).

If the operator L := ∆g + a+ bKg has finite index, then

∀α > α0,

∫ ∞
0

e−2αrV (r) dr <∞,

and hence, the lower volume growth of M satisfies

lim inf
r→∞

r−1 ln(V (r))) ≤ 2α0.

Proof. It follows from our assumptions that the operator L is positive out-
side some compact set (see [14], Proposition 1). In particular, it is positive
onM \B(R0) for some radius R0. Choose R > R0+1 and define the function

(26) ξ(r) =


0 for r ≤ R0,

(1− R0+1
R )αR(r −R0) for R0 ≤ r ≤ R0 + 1,

(1− r
R)αR for R0 + 1 ≤ r ≤ R,

where the parameter α will be chosen later on. The positivity of the operator
L on M \B(R0) implies that

0 ≤
∫
M

(
(ξ′(r))2 + aξ2(r) + bKgξ

2(r)
)
dvg.
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We write the integral on the right-hand side as the sum of two integrals,∫
C(R0,R0+1) and

∫
C(R0+1,R). The first integral can be written as∫
C(R0,R0+1)

=
(
1− R0 + 1

R

)αR
C(B(R0)),

where C(B(R0)) is a constant which only depends on the geometry of M on
the ball B(R0). Using Lemma 5.2 and the fact that χ(B(r)) ≤ 1 for all r,
the second integral can be estimated as follows∫

C(R0+1,R)
≤

∫
C(R0+1,R)

(
(ξ′)2 + aξ2 − b(ξ2)′′

)
dvg

+2πb− ξ2(R0 + 1)G(R0 + 1) + 2αL(R0 + 1).
Using (26), the definition for the function ξ, the integral in the first line of
the above inequality can be written as

−
(
(4b− 1)α2 − 2bα

R
− a

) ∫ R

R0+1

(
1− r

R

)2αR−2
L(r) dr.

Taking α big enough so that the constant is positive, and using the fact that
L(r) = V ′(r), we obtain the inequality
2αR− 2

R

(
(4b−1)α2− 2bα

R
−a
) ∫ R

R0+1

(
1− r

R

)2αR−3
V (r) dr ≤ D(B(R0), α),

where D(B(R0), α) is a constant which only depends on the geometry of M
in the ball B(R0) and α. Letting R tend to infinity, we finally obtain that

2α
(
(4b− 1)α2 − a

) ∫ ∞
R0+1

e−2αrV (r) dr <∞,

provided that α > α0, which proves the first assertion in the theorem. The
second assertion follows easily. �

Remark. In the above theorem, we have assumed that a > 0. In the case
a = 0, one can show that the volume growth is at most quadratic (see [9],
Proposition 2.2).

5.2. Applications to stable minimal surfaces in H3 or H2×R. Let M
be a complete, orientable, minimal immersion into either the 3-dimensional
hyperbolic space H3 or into H2 × R. Let JM denote the Jacobi operator of
the immersion.

In the case of a minimal immersion M # H3(−1), the operator JM takes
the form JM = ∆M + 2 − |A|2, where A is the second fundamental form.
Using the Gauss equation, we have that KM = −1− 1

2 |A|
2, so that we can

rewrite the Jacobi operator of M # H3(−1) as
(27) JM = ∆M + 4 + 2KM .

In the case of a minimal immersion M # H2(−1)× R, the Jacobi operator
is given by JM = ∆M + 1 − v2 − |A|2, where v is the vertical component
of the unit normal vector to the surface. Using the Gauss equation, we
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have that KM = −v2− 1
2 |A|

2, so that we can rewrite the Jacobi operator of
M # H2(−1)× R as

(28) JM = ∆M + 2 + 2KM − (1− v2) ≤ J̃M := ∆M + 2 + 2KM .

In this case, the positivity of the operator JM implies the positivity of the
operator J̃M .

Applying Proposition 5.1 to the operator JM in the form (27) when M is a
minimal surface in H3, resp. to the operator J̃M in the form (28) when M
is a minimal surface in H2 × R, we obtain the following proposition.

Proposition 5.4. Let (M, g) # (M̂, ĝ) be a complete, orientable, minimal
immersion. Assume that the immersion is stable.

(1) If M̂ = H3, then λσ(∆g) ≤ 4
7 .

(2) If M̂ = H2 × R, then λσ(∆g) ≤ 2
7 .

If the immersion is only assumed to have finite index, then the same in-
equalities hold with λσ(∆g) replaced by λe(∆g), the infimum of the essential
spectrum.

Remarks. (i) The first assertion improves an earlier result of A. Candel
[6] who proved that λσ(M) ≤ 4

3 , provided that M is a complete, simply-
connected, stable minimal surface in H3. (ii) Note that in both cases, the
bottom of the spectrum of a totally geodesic H2 is 1/4.

Applying Proposition 5.3, we have the following proposition.

Proposition 5.5. Let (M, g) # (M̂, ĝ) be a complete, orientable, minimal
immersion. Let µ denote the lower volume growth rate of M ,

µ = lim inf
r→∞

r−1 ln(V (r))),

where V (r) is the volume of the geodesic ball B(x0, r) for some given point
x0. Assume that the immersion has finite index.

(1) If M̂ = H3, then µ ≤ 2
√

4
7 .

(2) If M̂ = H2 × R, then µ ≤ 2
√

2
7 .

Remarks. (i) Assertion 1 in Proposition 5.5 improves a previous result in
[6], where Candel gives an upper bound on µ under the assumption that
M is simply-connected. (ii) Recall from [17, 4] that the volume growth is
related to the infimum of the essential spectrum by the formula

λe(∆g) ≤
( lim infr→∞ r−1 ln(V (r)))

2
)2
.

5.3. Futher applications. We note that the above argument also works
for surfaces with constant mean curvature |H| ≤ 1 in hyperbolic space. In
that case, KM = −(1−H2)− 1

2 |A|
2 and JM = ∆M + 4(1−H2) + 2KM . So

that, we obtain the following proposition.
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Proposition 5.6. Let (M, g) # H3 be a complete, orientable, stable CMC
immersion, with |H| ≤ 1. Then

λσ(∆g) ≤
4(1−H2)

7 .

The space H2 × R is a simply-connected 3-dimensional homogeneous mani-
fold, whose isometry group has dimension 4. Such manifolds have been well
studied (see for instance [12] and references therein) and can be parametrized
by two real parameters, say κ and τ , with κ 6= 4τ2. We denote them
by E3(κ, τ). When τ = 0, E3(κ, 0) = is the product space E2(κ) × R,
where E2(κ) is the space form of constant curvature κ. In particular,
H2 × R = E3(−1, 0).

If (M, g) # E3(κ, τ) is an immersed CMC H surface, then its Jacobi oper-
ator is given by (see [12], Proposition 5.11)

JM := ∆g + 2K − 4H2 − κ− (κ− 4τ2)v2.

In the next proposition we give an upper bound for the bottom of the spec-
trum in this general framework.
Proposition 5.7. Let (M, g) # E3(κ, τ) be a complete, orientable, stable
CMC H immersion, such that κ < 4τ2. Assume furthermore that 2H2 ≤
(2τ2 − κ). Then

λσ(∆g) ≤
4τ2 − 2κ− 4H2

7 .

Proof. Under the hypotheses we have the follows inequalities:
0 ≤ ∆g + 2K − 4H2 − κ− (κ− 4τ2)v2 ≤ ∆g + 2K − 4H2 − 2(κ− 2τ2),

and we may apply Proposition 5.1 again. �

6. Applications in higher dimensions

In this Section, we give some further applications of the inequalities we
proved in Section 3. In the following proposition, we give a structure theorem
for minimal hypersurfaces in Hm × R.
Proposition 6.1. Let Mm # Hm × R, m ≥ 3, be a complete, orientable
minimal hypersurface, with unit normal field ν and second fundamental form
A. Let v denote the component of ν along ∂t. For 0 ≤ α ≤ 1, there exists a
constant c(m,α) satisfying c(m,α) > 0, whenever

(1) m ≥ 7 and α ≥ 0,
(2) m = 6 and α ≥ 0.083,
(3) m = 5 and α ≥ 0.578.

If M satisfies ‖A‖m ≤ c(m,α) and v2 ≥ α2, then M carries no L2-harmonic
1-form and hence has at most one end.

Proof. We only sketch the proof. The proof uses several ingredients.

1. According to [16], the manifold Mm satisfies the Sobolev inequality
(29) ‖ϕ‖22m

m−2
≤ S(2,m)‖dϕ‖22, ∀ϕ ∈ C1

0 (M).
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2. Let u ∈ T1M be a unit tangent vector to M . By Gauss equation, we
have the relation

Ric(u, u) = R̂ic(u, u)− R̂(u, ν, u, ν)− |A(u)|2,

where Ric denotes the Ricci curvature of M , R̂ic the Ricci curvature and R̂
the curvature tensor of M̂ = Hm ×R, and where A denotes the Weingarten
operator of the immersion. Using the curvature computations in [3] and the
fact that A has trace zero, we obtain the inequality

(30) Ric(u, u) ≥ −(m− 1)− m− 1
m
|A|2.

Let ω be an L2 harmonic 1-form on M . Using the Weitzenböck formula for
1-forms, the improved Kato inequality

(31) 1
m− 1 |d|ω||

2 ≤ |Dω|2 − |d|ω||2,

and inequality (30), we find that ω satisfies the following inequality in the
weak sense

(32) 1
m− 1 |d|ω||

2 + |ω|∆|ω| ≤ (m− 1)|ω|2 + m− 1
m
|A|2|ω|2.

The following formal calculation can easily be made rigorous by using cut-off
functions. Integrate (32) overM using integration by parts and the notation
f := |ω|,

m

m− 1

∫
M
|df |2 ≤ (m− 1)

∫
M
f2 + m− 1

m

∫
M
|A|2f2.

Plug the assumption |v| ≥ α and the inequality (14) into the preceding
inequality. Use Hölder’s inequality to estimate the integral

∫
M |A|2f2 and

the Sobolev inequality (29). It follows that

[ m

m− 1 −
4(m− 1)

(m− 2 + α)2 ]‖f‖22m
m−2
≤ S(2,m)m− 1

m
‖A‖2m‖f‖22m

m−2

and we can conclude the proof with the constant

C(m,α) = m

(m− 1)(S(2,m))
m(m− 2 + α)2 − 4(m− 1)2

(m− 1)(m− 2 + α)2 .

�

Proposition 6.2. Let Mm # Hm × R be a complete, orientable minimal
hypersurface, with second fundamental form A. Assume that ||A||m < ∞.
Then

(1) Mm has finite index, if m ≥ 3,
(2) Mm has only finitely many ends, if m ≥ 7.

Proof. Assertion 1 was proved in [3]. To prove Assertion 2, we can mimic
the proof of Corollary 4.2 to show that the operator L := ∆ +

√
m−1
2 |A|2 −

(m − 1) has finite index, when m ≥ 7. We then apply Theorem 1 of [7] to
conclude the proof. �
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Proposition 6.3. Let Mm # Hm × R, m ≥ 3, be a complete, orientable
minimal hypersurface, with unit normal field ν and second fundamental form
A. Let v denote the component of ν along ∂t. If,

(1) ‖A‖∞ ≤ (m−1
2 )2, or

(2) ‖A‖∞ ≤ (m−2+α
2 )2 and v2 ≥ α, or

(3) |A|2 + (m− 1)v2 ≤ m2

4 on M .
then the immersion M is stable.

Proof. Recall that the Jacobi operator JM of the immersion M is given by
the formula

JM = ∆g + (m− 1)(1− v2)− |A|2.
Assertion 1 follows from Proposition 4.1. Assertions 2 and 3 follow from
Corollary 3.2. �

Remark 1. The second condition is not so interesting because it implies
that v does not vanish. If M is connected, we may assume that v > 0 and
then M is stable because v is a Jacobi field, JM (v) = 0.

Remark 2. We can write the operator JM as

JM = ∆g − (m− 2
2 )2 +

[
(m2 )2 − |A|2

]
.

In view of the results à la Lieb or Li-Yau, one can show that if the integral∫
M

[
(m2 )2 − |A|2

]m/2
−

is small enough, then M is stable.
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